Quantitative Analysis of Environmental Air Contaminants Using APCI-MS/MS in Mobile Laboratories

Germain Tremblay, Lise Blanchard, Dominic Lortie – Ministère du Développement durable, de l'Environnement et des Parcs, Laval, Québec, Canada; Calin G. Znamirovschi – Thermo Fisher Scientific, West Palm Beach, Florida, USA

Key Words

- Environmental Monitoring
- TSQ Series Triple
 Quadrupole MS

Introduction

There are many potential hazards in our environment. Chemical emissions, accidental chemical spills and fires are of particular concern. A real-time analytical atmospheric pressure chemical ionization-tandem mass spectrometry (APCI-MS/MS) method for the quantitative analysis of air contaminants has been developed using a customized, direct-sampling APCI device coupled with a Thermo Scientific TSQ series triple stage quadrupole mass spectrometer. This method is critical for both environmental monitoring in areas of steady or long-term exposure and also for accidental or emergency instances. In such situations, timely and accurate qualitative and quantitative information on the types and levels of various toxic chemical contaminants is required to evaluate the hazard and prevent public exposure. Methods have been developed for chemicals related to the ambient air quality criteria, governed by the Ministère du Développement durable, de l'Environnement et des Parcs (MDDEP) of Québec, Canada. Criteria are illustrated in Table 1, for a limited selection of contaminants. A TSQ Series triple stage quadrupole mass spectrometer, with a customized APCI device for direct sampling, has been used (Figure 1).

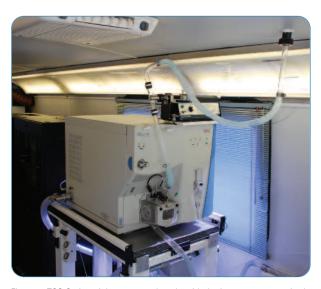


Figure 1: TSQ Series triple stage quadrupole with the ion source customized for direct air sampling.

Table 1. Ambient air quality criteria for common contaminants (limits of acceptance)

Limit Concentration

Limit of Detection

(maximum mean/4 minutes) (µg/m³)	(MS/MS) (µg/m³)
8600	4
270	0.1
e 300	0.02
20	16
1150	8
740	6
200	2
160	0.4
ethyl ND	1
1050	0.3
22	5
	(maximum mean/4 minutes) (µg/m³) 8600 270 300 20 1150 740 200 160 ethyl ND

Goal

- To develop a rapid, on-site, real-time air analysis method to identify and quantitate several common air contaminants.
- 2) To demonstrate the advantages of using the Thermo Scientific Ion Max source and tandem mass spectrometry (MS/MS) for the detection and determination of a selected range of atmospheric pollutants.
- To establish and validate methods for air quality control programs, emission inventory and reporting, compliance and enforcement.

Experimental

Preparation of Standards

Standards were prepared by infusing saturated vapor of standard-grade samples of phenol, propylene glycol monomethyl ether (PGME), methyl-ethyl ketone (MEK), and ethylacetate, respectively into a flow of ambient air using a gastight syringe pumping system connected to the Ion MaxTM source of the mass spectrometer (Figure 2). The concentrations of standards were calculated as a function of the infusion rate of saturated vapor of the respective standards into a non-contaminated, continuous flow of atmospheric air, drawn under normal conditions of temperature and pressure. See Tables 2 and 3.

$$Conc(ppb) = \frac{Ps}{Pa} \times \frac{I}{F} \times 1000$$

Ps = Vapor pressure of the compound (mm Hg at 21 °C)

Pa = Atmospheric pressure (mm Hg at 21 °C)

 $I = Infusion \ rate (\mu L/min)$

F = Sampling pump flow (L/min)

$$Conc(\mu g/m^3) = Conc(ppb) \times \frac{W}{V}$$

W = Molecular weight of analyzed compound

V = Volume (24 liters at 21 °C)

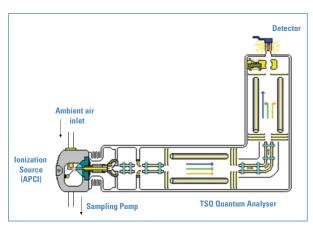


Figure 2: Block diagram of the TSQ Series triple stage quadrupole mass spectrometer custom source.

Table 3. Sample calculation of concentrations of compounds of interest.

	Phenol	Ethylacetate	MEK	PGME
Vapor pressure (Ps)	0.62	75.1	75.6	12
Syringe capacity (mL)	5	1	1	1
Speed setting	9	7	2	7
Infusion rate (µL/min)	1250	100	15	100
Sampling pump flow (L/min)	57	57	55	57
Molecular weight	94	88	72	90
Concentration (ppb)	18	173	27	28
Concentration (µg/m³)	70	636	81	104

Sample Analysis

Air samples were drawn directly from open atmosphere into the Ion Max source housing through the built-in probe aperture. The set-up consisted of an infusion pump regenerative blower, with the drain tube of the source chamber serving as the outlet. Following APCI, the resulting ions entered the mass spectrometer through the ion transfer tube interface.

MS Conditions

Mass spectrometer: Thermo Scientific TSQ Quantum

Discovery MAX

APCI corona voltage: 4 kV (- 4 kV in negative ion mode)

Ion transfer tube

temperature: 180 °C Skimmer offset: 5 V CID gas pressure: 1.5 mTorr

Resolution: Unit Resolution (0.7 FWHM)
Analytical scan type: Selective reaction monitoring

(SRM)

SRM conditions: Scan time: 50 ms

Scan width: 1.000 Da

The MS/MS experimental conditions for SRM are shown in Table 4.

Table 2. Calibration of the infusion pump (Correlation between syringe speed and infusion rate).

Syringe capacity					Syringe speed	i			
	1	2	3	4	5	6	7	8	9
				FI	ow rate (μL/m	in)			
10 μL	0.1	0.15	0.20	0.35	0.50	0.75	1.0	1.5	2.5
100 μL	1.0	1.5	2.0	3.5	5.0	7.5	10	15	25
1 mL	10	15	20	35	50	75	100	150	250
2.5 mL	25	38	50	88	125	188	250	375	625
5 mL	50	75	100	175	250	375	500	750	1250
10 mL	100	150	200	350	500	750	1000	1500	2500
50 mL	350	560	720	1230	1800	2560			

Table 4. MS/MS experimental conditions for SRM.

Compound	Precursor Ion (m/z)	Product Ion (m/z)	Tube Lens Voltage (V)	Collision Energy (V)
¹³ C ₂ -acetic acid	94	61	56	11
d ₆ -acetone	65	33	82	18
Ethylacetate	89	61	45	8
MEK	73	43	108	13
PGME	91	31	54	21
PGME	91	73	54	5
Phenol	126	93	35	13

Results and Discussion

In negative ion mode, ${}^{13}\mathrm{C}_2$ -acetic acid was used as an internal standard. Acetic acid produced a deprotonated molecule (m/z 94) [${}^{13}\mathrm{CH}_3{}^{13}\mathrm{COOH}\cdot\mathrm{O}_2$] which, under CID conditions, produces $\mathrm{CH}_3\mathrm{COO}$ (m/z 61). Phenol forms an analog adduct [$\mathrm{C}_6\mathrm{H}_5\mathrm{OH}\cdot\mathrm{O}_2$] (m/z 126), which yields a product ion at m/z 93, $\mathrm{C}_6\mathrm{H}_5\mathrm{O}$.

In positive ion mode, acetone- d_6 (m/z 65 to m/z 33) was used as an internal standard. Two precursor ion – product ion transitions were monitored, m/z 91 to m/z 31 and m/z 91 to m/z 73, respectively, in multiple reaction monitoring (MRM) mode for the analysis of PGME.

The limit of detection (LOD) is the concentration equivalent of 3x standard deviation of the response at the background level (i.e., ambient air, in the absence of the subject compound).

The calibration data for ethylacetate, MEK, PGME, and phenol are shown in Figures 3 through 10. The quantitative results are listed in Tables 5 through 8.

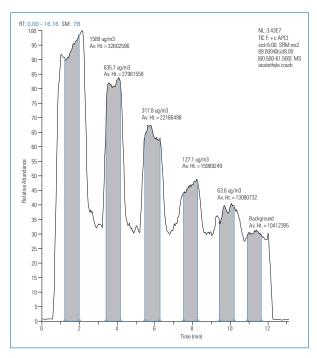


Figure 3: Reconstructed ion trace for ethylacetate to produce the calibration curve.

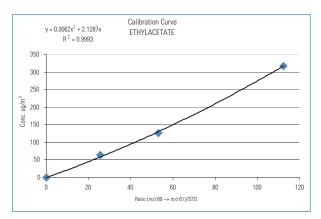


Figure 4: Calibration curve for ethylacetate.

Table 5. Quantitative results for ethylacetate and LOD determination.

		ETHYLACE	TATE			
STD: Acetone d ₆ , syringe	1 mL, Speed 2					
SRM (<i>m/z</i> 65→ <i>m/z</i> 33)						
RT (min.)	Syringe Speed	Average Height	Background Subtracted			
10.5	OFF	26000				
15.55	2	130873	104873			
Ethylacetate						
Ethylacetate SRM (<i>m/z</i> 89→ <i>m/z</i> 61)	 	1				
SRM (<i>m/z</i> 89→ <i>m/z</i> 61)	Syringe Speed	Average Height	Background Subtracted	Response/ISTD	Concentration	
RT (min)	Syringe Speed	Average Height	Subtracted	Response/ISTD Ratio	Concentration (µg/m³)	
SRM (<i>m/z</i> 89→ <i>m/z</i> 61)	Speed	Average Height 32602596 27961558				
RT (min) 1.2 - 2.0	Speed 9	32602596	Subtracted 22190201			
RT (min) 1.2 - 2.0 3.4 - 4.2	Speed 9 7	32602596 27961558	Subtracted 22190201 17549163	Ratio	(µg/m³)	
RT (min) 1.2 - 2.0 3.4 - 4.2 5.5 - 6.3	Speed 9 7 5	32602596 27961558 22186498	Subtracted 22190201 17549163 11774103	Ratio 112.3	(µg/m³) 317.8	
RT (min) 1.2 - 2.0 3.4 - 4.2 5.5 - 6.3 7.5 - 8.3	Speed 9 7 5	32602596 27961558 22186498 15989249	Subtracted 22190201 17549163 11774103 5576854	112.3 53.2	(μg/m³) 317.8 127.1	Std. Dev. = 2180

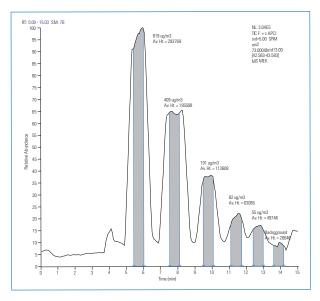


Figure 5: Reconstructed ion trace for MEK to produce the calibration curve.

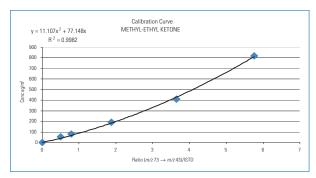


Figure 6: Calibration curve for MEK.

Table 6. Quantitative results for MEK, and LOD determination.

ISTD: Acetone d ₆ , syringe	1 mL, Speed 2					
SRM (<i>m/z</i> 65→ <i>m/z</i> 33)						
RT	Syringe Speed	Aver Height	Background Subtracted			
3.03	OFF	45240				
2.38		91628	46388			
Methyl-ethyl ketone			1			
Methyl-ethyl ketone SRM (<i>m/z</i> 65→ <i>m/z</i> 33)						
SRM (<i>m/z</i> 65→ <i>m/z</i> 33)	Syringe		Background	Response/ISTD	Concentration	
	Syringe Speed	Average Height	Background Subtracted	Response/ISTD Ratio	Concentration (µg/m³)	
SRM (<i>m/z</i> 65→ <i>m/z</i> 33)		Average Height 293769				
SRM (<i>m/z</i> 65→<i>m/z</i> 33) RT (min)	Speed		Subtracted	Ratio	(µg/m³)	
SRM (<i>m</i> / <i>z</i> 65→ <i>m</i> / <i>z</i> 33) RT (min) 5.4 - 6.0	Speed 9	293769	Subtracted 267123	Ratio 5.8	(μg/m³) 819	
RT (m/z 65→m/z 33) RT (min) 5.4 - 6.0 7.5 - 8.1	Speed 9 7	293769 195508	Subtracted 267123 168862	8atio 5.8 3.6	(μg/m³) 819 409	
RT (m/z 65→m/z 33) RT (min) 5.4 - 6.0 7.5 - 8.1 9.5 - 10.1	Speed 9 7 5	293769 195508 113608	Subtracted 267123 168862 86962	Ratio 5.8 3.6 1.9	(µg/m³) 819 409 191	
RT (min) 5.4 - 6.0 7.5 - 8.1 9.5 - 10.1 11.1 - 10.7	Speed 9 7 5	293769 195508 113608 63065	Subtracted 267123 168862 86962 36419	8atio 5.8 3.6 1.9 0.8	(µg/m³) 819 409 191 82	Std. Dev. = 1100

Figure 7: Reconstructed ion trace for PGME to produce the calibration curve.

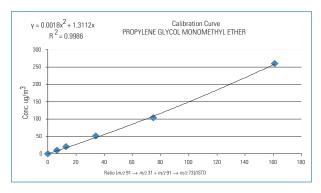


Figure 8: Calibration curve for PGME.

Table 7. Quantitative results for PGME, and LOD determination.

STD: Acetone d ₆ , syringe 1	1 mL. Speed 2					
SRM (<i>m/z</i> 65→ <i>m/z</i> 33)	, 0 0 0 0 0					
RT	Syringe Speed	Aver Height	Background Subtracted			
11.00	OFF	12500				
7.30		68039	55539			
		ЛЕ)				
		ЛЕ)	Background	Response/ISTD	Concentration	
	/z 91 → m/z 73)	NE) Average Height	Background Subtracted	Response/ISTD Ratio	Concentration (µg/m³)	
/IRM (<i>m/z</i> 91→ <i>m/z</i> 33 + <i>m/</i>	/z 91 → <i>m/z 73</i>) Syringe					
MRM (<i>m/z</i> 91→<i>m/z</i> 33 + <i>m/</i> RT (min)	7z 91 → <i>m/z</i> 73) Syringe Speed	Average Height	Subtracted	Ratio	(μg/m³)	
MRM (<i>m/z</i> 91→ <i>m/z</i> 33 + <i>m/</i> RT (min) 9.8 - 10.6	7z 91 → <i>m/z</i> 73) Syringe Speed	Average Height 9237720	Subtracted 8943477	Ratio 161.0	(µg/m³) 260	
NRM (<i>m/z</i> 91→ <i>m/z</i> 33 + <i>m/</i> RT (min) 9.8 - 10.6 12.2 -13.0	2 91→m/z 73) Syringe Speed 9 7	Average Height 9237720 4458866	Subtracted 8943477 4164623	Ratio 161.0 75.0	(μg/m³) 260 104	
9.8 - 10.6 12.2 -13.0 14.8 - 15.6	Syringe Speed 9 7 5	Average Height 9237720 4458866 2181745	Subtracted 8943477 4164623 1887502	Ratio 161.0 75.0 34.0	(µg/m³) 260 104 52	
MRM (m/z 91→m/z 33 + m/ RT (min) 9.8 - 10.6 12.2 - 13.0 14.8 - 15.6 17.1 - 17.9	Syringe Speed 9 7 5	Average Height 9237720 4458866 2181745 1015925	Subtracted 8943477 4164623 1887502 721682	Ratio 161.0 75.0 34.0 13.0	(µg/m³) 260 104 52 21	Std. Dev. = 152

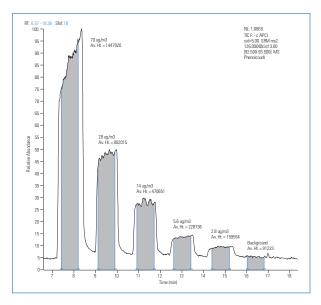


Figure 9: Reconstructed ion trace for phenol to produce the calibration curve.

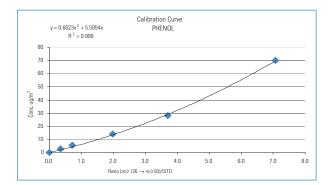


Figure 10: Calibration curve for phenol.

Table 8. Quantitative results for phenol, and LOD determination.

		PHE	NOL			
ISTD: Acetic acid ¹³ D ₂ , syri	nge 1 mL, Spee	d 2				
SRM (<i>m/z</i> 94→ <i>m/z</i> 61)						
RT	Syringe Speed	Aver Height	Background Subtracted			
6.0	OFF	57639				
4.6		249205	191566			
Phenol	<u>'</u>	-	-			_ _
Phenol SRM (<i>m/z</i> 126→ <i>m/z</i> 93)						
	Syringe		Background	Response/ISTD	Concentration	_
	Syringe Speed	Average Height	Background Subtracted	Response/ISTD Ratio	Concentration (µg/m³)	
SRM (<i>m/z</i> 126→ <i>m/z</i> 93)		Average Height 1447020				
SRM (<i>m</i> / z 126→ <i>m</i> / <i>z</i> 93) RT (min)	Speed		Subtracted	Ratio	(µg/m³)	
SRM (<i>m/z</i> 126→ <i>m/z</i> 93) RT (min) 7.4 - 8.2	Speed 9	1447020	Subtracted 1355797	Ratio 7.1	(μg/m³) 70	
RT (min) 7.4 - 8.2 9.1 - 9.9	Speed 9 7	1447020 802015	Subtracted 1355797 710792	7.1 3.7	(μg/m³) 70 28	
RT (min) 7.4 - 8.2 9.1 - 9.9 10.9 - 11.7	Speed 9 7 5	1447020 802015 470651	Subtracted 1355797 710792 379428	Ratio 7.1 3.7 2.0	(µg/m³) 70 28 14	
RT (min) 7.4 - 8.2 9.1 - 9.9 10.9 - 11.7 12.6 - 13.4	Speed 9 7 5	1447020 802015 470651 228736	Subtracted 1355797 710792 379428 137513	Ratio 7.1 3.7 2.0 0.7	(µg/m³) 70 28 14 5.6	Std. Dev. = 387

Conclusion

The custom TSQ Series triple stage quadrupole mass spectrometer system allows the detection and quantitative analysis of a series of chemical pollutants in ambient air. Concentration of these pollutants can be determined in a real-time fashion for immediate action in case of chemical spills, fire, etc., or for the purpose of trending in environmental monitoring.

This application demonstrates that LODs can be achieved with the TSQ Series triple stage quadrupole mass spectrometer in real time, without sample preconcentration or any separation technique. The achieved

LOD values are lower than the regulatory limits for the respective compounds.

The custom configuration of the TSQ Series triple stage quadrupole mass spectrometer is well-suited for installation in mobile laboratories (Figure 11). Such configuration demonstrates, in addition to the reliability and ruggedness of the TSQ instrumentation, applicability of the system to on-site environmental analysis. In emergency situations, like fires or chemical spills, these mobile facilities are essential for real-time ambient air analysis.

Figure 11: The mobile laboratory of MDDEP Québec, Canada, containing the rugged and reliable TSQ Series triple quadrupole system functioning dynamically on-board.

In addition to these offices, Thermo Fisher Scientific maintains a network of representative organizations throughout the world.

Africa-Other +27 11 570 1840

Australia +61 3 9757 4300

Austria

+43 1 333 50 34 0

Belgium +32 53 73 42 41

Canada +1 800 530 8447

China

+86 10 8419 3588 **Denmark**

Denmark +45 70 23 62 60

Europe-Other +43 1 333 50 34 0

Finland/Norway/ Sweden +46 8 556 468 00

France

+33 1 60 92 48 00 **Germany** +49 6103 408 1014

India

Italy

+39 02 950 591 **Japan** +81 45 453 9100

Latin America +1 561 688 8700

Middle East +43 1 333 50 34 0

Netherlands +31 76 579 55 55

New Zealand +64 9 980 6700

South Africa +27 11 570 1840

Spain +34 914 845 965

Switzerland +41 61 716 77 00

UK +44 1442 233555

USA +1 800 532 4752

9001 Thermo Fisher Scientific,

San Jose, CA USA is ISO Certified.

AN63193 E 03/10S

www.thermoscientific.com

Legal Notices

©2010 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.

