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Alternative Transcript Analysis Methods for Exon Arrays 

I. Introduction 
With exon arrays like the GeneChip® Human Exon 1.0 ST Array, researchers 
can examine the transcriptional profile of an entire gene. Being able to gather 
data for each individual exon enables the investigation of phenomena such as 
alternative splicing, alternative promoter usage, and alternative termination while 
also providing more probe level data to determine the overall level of expression 
a particular locus.  Detecting relative changes in alternative transcript forms is the 
subject of this whitepaper. 

We conclude that an ANOVA based method applied to a Splicing Index equal to 
the ratio of exon signal to gene signal works well in two test data sets: one a 
tissue panel and the other a set of cancerous and normal samples from the same 
tissue. For the tissue panel data set, a correlation based method, Robust PAC, 
performs well. 

One of the most well studied alternative splicing events is the alternative 
utilization of “cassette exons”. Here, we describe the evaluation of the 
performance of different mathematical methods designed to detect alternatively 
spliced cassette exons from the exon array data.   

To do this, we first tested the method’s robustness in an artificial data set by 
constructing “genes” comprised of a group of probe selection regions that are 
best suggested by experimentally-derived annotation evidence as biologically 
real and are always jointly expressed in a sample data set.  Each such group of 
probe selection regions is referred to as the “core constitutive exons” of that 
“gene.”  We then simulated alternative splice events in each such “gene” by 
substituting exons from alternative regions of the genome and constructed ROC 
curves as a way to measure the performance of the different methods. 

II. Data set 

II.A. Core Constitutive Exons 
To generate a set of exons that appear to be constitutively included in all 
transcripts splicing graphs were generated according to the method of Sugnet, et 
al, 20041, using all human RefSeq, mRNA and EST sequences. The graphs were 
pruned by requiring that each exon be either also present in mouse cDNAs or 
present multiple times in human cDNAs. The graphs were then searched to 
identify exons that were constitutively included in the pruned graph. To ensure 
that an exon is likely to be present in all transcripts a minimum number of 5 
mRNAs or 10 ESTs (or a combination of the two) had to contain the exon. 
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Exons making up the core constitutive genes tend to be well-expressed; their 
median signal is greater than 10 times the median signal of background 
probesets in both data sets. 

II.B. Tissue panel 
The tissue panel data set consists of 11 human tissue samples.  The 
hybridization cocktail for each sample was scanned in triplicate, using three 
arrays per sample for a total of 33 scans.  In this study we quantile normalized 
the triplicates together, then multiplicatively scaled the resulting scans so that 
they all had the same median (“median scaling”).  All features, whether genomic 
or non-genomic are included in the both normalizations. 

II.B.1 Alternative splice set generation 
The alternative splice set was generated by taking the probes of one exon in 
each gene (the first in each set) and substituting them into another gene.  The 
probes of the real exon in the substituted gene were moved to yet another gene, 
and after repeating over all 5,800 genes, each gene had an “exon” that did not 
belong to it. 

This approach works as variation within replicate groups is not due to biological 
variation and hence, if the core constitutive genes have detectable expression in 
one or more of the tissues, then they will likely have different expression in the 
different tissues. Hence each gene in the alternative splice set will each contain 
an exon that will behave differently across tissues. The major caveat in creating 
this alternative splice set is that it is unknown how well this procedure mimics 
true biological alternative splicing behavior. 

II.C. Colon Cancer 
The Colon Cancer data set consists of 18 biologically distinct samples arranged 
in 9 pairs.  Each pair is a normal colon tissue sample and a colon cancer sample 
from each of 9 different individuals.  There are no replicate scans.  All scans 
were normalized using median scaling. 

II.C.1 Alternative Splice set generation 
For the colon cancer set, biological variation in signal is large enough within 
normal and tumor groups so that around 98% of the genes did not show 
significant differences in means of signal between the group of cancer and 
normal samples (p-value > .05).  Accordingly, the approach in creating an 
Alternative splice set as in the tissue panel data will not work well; replacing an 
exon by an exon from another gene will not induce detectable signal changes 
from one group to the other and hence methods of alternative splice detection 
based on changes in signal of exon normalized by gene will not detect anything. 

Instead, we took a different approach: a “background” set of probesets was 
generated by randomly selecting 5,800 probesets from probesets with mean 
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signal across all 18 samples less than the 45th percentile of mean signal of each 
probeset across all 18 samples. 

An alternative splice data set was simulated by replacing probe intensities in the 
first exon in each gene with probe intensities from a “background” probeset  for 
the normal scans only.  Tumor scans were left untouched. 

We matched the number of probes in the replacement exon, as PLIER2 signal is 
calculated across all samples by using probe intensities.  Replacement probes 
need not have the same GC content, and replacement probe intensities in each 
sample were adjusted by the ratio of surrogate intensity mismatch of original to 
replacement based on GC content. 

Exons making up the core constitutive genes have much higher overall signal 
than the background probesets on the chip: the median signal (2.5) of 
background probesets is around the 20th percentile of all probeset signals and 
the median signal (35) of the first exon is around the 70th percentile of all 
probeset signals. 

 

III. Splice Detection Methods 
Several different methods are assessed; Pattern-Based Correlation (PAC) and 
two ANOVA methods: Microarray Detection of Alternative Splicing (MIDAS) 
presented here, and ANOSVA (Cline et al, 2005)3. 

Their suitability to any particular data set will depend on the structure of the data 
set and the goals of the experiment. Data set exploration using multiple methods, 
including variations on these methods, is recommended. 

In general, many of the splice detection methods have a similar structure: 

• Under the null hypothesis, exons or probes comprising a gene are 
assumed to be proportional to each other across different samples. 

• A model is fit that predicts probe or exon response under the null 
hypothesis. 

• A statistic is constructed that measures how deviant the data is from the 
model. 

• This statistic is used to construct a p-value. 

III.A. Splicing Index 
The Splicing Index captures the basic metric for the analysis of alternative 
splicing. Specifically it is a measure of how much exon specific expression (with 
gene induction factored out) differs between two samples.  The first step is to 
normalize the exon level signals to the gene level signals.  

Equation 1: 
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where ei,j,k is the exon signal estimate of the i exon, j experiment, and k gene.   

,j kg is the gene level signal estimate of the j experiment and k gene. The splicing 

index is then the ratio of normalized exon signal estimates from one sample or 
set of samples relative to another. For example, in the colon cancer data set a 
splicing index could be established for each gene by taking the median ni,j,k for 
the cancer samples and dividing by the median ni,j,k for the normal samples. 
Alternatively one might want to calculate a splicing ratio for each paired 
normal/cancer sample and then report the median ratio. Use of such an index 
can be found in Clark, et al.4 

III.B. PAC 
PAC assumes that in the absence of splicing, exon expression follows gene 
expressions across samples using the following model: 

Equation 1: , , , ,i j k i k j ke n g=  

where , ,i j ke  is the signal of the i-th exon of the j-th sample of the k-th gene, ,j kg  is 

the signal of k-th gene in the j-th sample, and ni,k  is the ratio of exon i signal to its 
gene signal. 

We use a robust measure of gene signal and correlate signal of each exon with 
this signal.  Low correlations are indications of alternative splicing. The robust 
measure of gene signal allows multiple exons to not track the overall gene, so 
long as they remain in a “small enough” minority.  In this paper we use PLIER. 

An important class of experiments asks the following question: Is there an 
alternative splice variant present in one group out of two groups of samples. PAC 
has the problem that it will fail in two-sample cases, as correlation will always be 
+1 (exon response agrees in direction from one sample type to the other) or -1 
(exon response disagrees in direction); this always happens no matter how small 
the change actually is; in the rare event that there is no numerical change 
correlation would be zero.  Hence PAC is better suited to experiments with a 
relatively large number of sample types. 

III.C. MIDAS 
We introduce an alternative ANOVA based method based on measuring 
differences between exon level signal and aggregate gene level signal that we 
call Microarray Detection of Alternative Splicing using (MIDAS) that has good 
performance. 

The basic idea is the following: 

• We use PLIER to generate a robust estimate of gene-level signal by using 
data from all features in all exons in the gene. This signal has the virtue 
that it will be robust against exons that exhibit anomalous signal across 
samples, whether they be non-expressing probe sets, probe sets that are 
incorrectly assigned to a gene, or are true alternative splice exons.  Since 
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this array has no mismatch probes we use a surrogate estimate of 
mismatch by using the median intensity of all antigenomic probes on the 
same array that have the same GC content as the probe. 

• We use PLIER to similarly generate an estimate of signal for each exon. 
• Under the null hypothesis of no alternative splicing for an exon, we would 

expect the difference between the logged signal for the exon and its gene 
to be a constant across all samples. 

In other words, we expect that observed signal from each exon will have a 
constant ratio with observed signal from its gene. 

A detection metric or statistic will be based on log of the Splicing Index, i.e, the 
difference between logged signal of each exon and its gene. We add a small 
constant before logging to stabilize variance (see discussion in  III.A above). 

III.C.1 MIDAS relation to ANOVA 
Statistics based on the Splicing Index can be calculated either for each gene or 
for each exon.  A model for possible splicing is: 

Equation 2: , , , , , ,i j k i k i j k j ke p gα=  

where , ,i j ke  is the signal of the i-th exon of the j-th sample of the k-th gene, ,j kg  is 

the signal of k-th gene in the j-th sample, ,i kα  is the ratio of exon i signal to its 

gene signal in the sample where it is maximally expressed, and , ,0 1i j kp≤ ≤  (with 

, , 1i j kp =  in the sample where exon I is maximally expressed) is the proportionate 

expression of this exon of this gene in tissue j. 

Dividing both sides ,j kg  obtains the Splicing Index and taking logs reduces this to 

an additive model (ignoring the possibility of zero signal): 

Equation 3: , , , , , , , , ,log( / ) log( ) log( ) log( ) log( )i j k j k i j k j k i k i j ke g e g pα= − = +  

III.C.2 Exon-level detection vs. Gene Level detection 
Gene-level MIDAS is a 2-way ANOVA that includes an error term and possible 
interactions comparing: 

Equation 4: , , , , , , , , , ,log( ) log( ) log( ) log( )i j k j k i k i j k i j k i j ke g pα γ ε− = + + +  

to the reduced model: 

Equation 5: , , , , , ,log( ) log( ) log( )i j k j k i k i j ke g α ε− = +  

So we ask the question: are effects other than exon effects present; i.e., test 

, , , ,log( )i j k i j kp γ= =0 across samples and exons. 
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Exon-level MIDAS considers the situation an exon at a time.  In this narrow view 

,log( )i kα  is constant and hence it is appropriate to use classical 1-way ANOVA 

that compares the full model: 

Equation 4: , , , , , , , ,log( ) log( ) log( ) log( )i j k j k i k i j k i j ke g pα ε− = + +  

to: 

Equation 5: , , , , , ,log( ) log( ) log( )i j k j k i k i j ke g α ε− = +  

to test the hypothesis of no alternative splicing by testing for the constant effects 
model , ,log( ) 0i j kp =  for all J samples. 

As discussed in  IV, the log model is inappropriate when exons or gene are not 
expressed. In practice, stabilizing variance by adding a constant (as we do here 
and further discussed in  IV) will go a long way to reducing the false positive rate.  

Both PAC and MIDAS show considerable improvement in the ROC curves when 
using exon-level detection over gene-level detection.  See  IV.B for further 
discussion. 

III.D. ANOSVA 
A detailed description of the ANOSVA can be found in (Cline et al, 2005).In short, 
ANOSVA assumes all probe responses can be modeled as proportional to each 
other across different samples in the absence of alternative splicing; this reduces 
to an additive ANOVA model after taking logs.  The ANOSVA method then tests 
for an alternative hypothesis of non-zero interactions between samples and 
exons using an F-statistic.  Preliminary evaluation of ANOSVA on exon array 
data did not yield good performance for exon array data.  

III.E.DECONV 
Another published algorithm for estimating relative concentrations of different 
splice variants is described in (Wang, Hubbell, et al)5, where it is applied to data 
on an experimental microarray.  

If we define a set of splice variants each consisting of all exons but one, this 
algorithm can be recast into a model for probe-level intensities , , ,h i j kx similar in 

form to Equation 2 above, but with an extra multiplicative term denoting the probe 
affinity , ,h i ka  of probe h of exon i of gene k in tissue j: 

Equation 6: , , , , , , , , , , , ,h i j k h i k i k i j k j k h i j kx a p gα ε= +  

Parameters are estimated using an iterative maximum likelihood estimation 
method, including , ,i j kp .  For any one gene k, the relative ratios of the , ,i j kp across 

tissues j represent relative concentration estimates of exons.  Alternative splicing 
would be present if these relative ratios deviate from each other in a statistically 
significant way.  This model differs from MIDAS in that error is treated additively 
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rather than multiplicatively, and gene signal is estimated directly from the MLE 
rather than from a separate PLIER fit. 

IV. Non-expressing probesets and genes 
The Splicing Index finds probesets whose response data disagrees with a model 
where splicing is assumed absent.  However, this can occur in cases with no 
alternative splicing: 

• On the GeneChip® Human Exon 1.0 ST Array many probesets are based 
on gene prediction algorithms and EST singletons; as such, many may be 
interrogating regions that are not actually transcribed in a particular 
sample.  Such probesets will typically have low probe intensities 
corresponding to noise and the Splicing Index will not generally track the 
gene signal. 

• When the gene and probeset do correspond to biological reality, the gene 
may be poorly expressed or unexpressed in the biological samples.  Both 
the gene and the probe set will have low probe intensities corresponding 
to noise and the Splicing Index will have no meaning. 

Hence it is important that any statistical method based on the Splicing Index 
should be able to handle low intensity probe sets. 

Handling of probesets or genes not expressed in sample is an active area of 
research and while there is no specific assessment of the methods in the context 
of the model breakdown above, we took the following steps to guard against 
model breakdown:  

IV.A. Stabilize Variance 
Most of the models discussed use the log of the Splicing Index and for these we 
stabilized variance by adding a constant before taking logs.  This trades bias for 
variance.  We chose a constant approximately equal to the 20%-ile of probeset 
signals. This appears to be well within the background level of probeset signals 
and since the core constitutive genes tend to be well-expressed (see discussion 
in  II.C.1 above), the bias will be relatively small. 

IV.B. Use exon-level models 
Probe sets that show only noise against a backdrop of true variation in gene 
signal will tend to generate higher values using MIDAS F-statistics.  If the 
detection statistic is calculated for the gene as a whole, then such exons must be 
removed before this calculation otherwise the gene will be flagged as a candidate 
for alternative splice events. We exploit the robust nature of PLIER estimates of 
gene signal to automatically filter out such probesets from the gene signal; this 
naturally leads to an exon-level approach. 
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V. Performance Evaluation 
A ROC curve measures how well a statistic differentiates true alternatives from 
false positives.  To do this exactly requires a known set that does not exhibit 
alternative splicing (the null set) to be compared with a known set that does 
exhibit alternative splicing (the alternative set).  However, in our situation, we do 
not have complete knowledge, and hence the null set is likely contaminated by 
some real alternative splicing. 

The effect of mixing some true alternative splice data into the null set will tend to 
cause the ROC curves to be constrained to a diamond (Bourgon)6 around the 
diagonal of ROC plot and hence reduce the differences between statistics for 
large p-values.  Mixing null data into the alternative set also affects the shape of 
the diamond; in this case the differences between statistics for small p-values will 
be affected. 

It is our belief that small-pvalues are much more important than large p-values in 
assessing performance of different statistics that detect alternative splicing, and 
hence the error in construction of the null set is unimportant in our conclusion. 

In any case, qualitatively we can see the empirical ROC curves seem to be well-
behaved; errors in construction of the null set probably do not affect p-values less 
than 0.1 

V.A. Tissue Data Set Performance 
Results vary considerably depending on the data set.  With no filtering for the 
tissue panel both PAC and MIDAS perform equivalently: 
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Figure 1: ROC curves for Alternative Splice detection in the Tissue Panel 

V.B. Colon Cancer/Normal Data Set Performance 
On the colon cancer data set, PAC is not applicable, and MIDAS reduces to a 2-
sample t-test. 
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Figure 2: ROC curve for Colon samples (Normal vs. Tumor) using MIDAS 

V.C. Methods stratified by number of exons per gene 
A histogram of the distribution of exons is shown below in Figure 3: 
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Figure 3: Histogram of exons per Constitutive Core Gene 

We split exons into approximately 3 equal groups (Table 1): 

Min exons/gene 3+ 5+ 10+ 

Max exons/gene 5 10 15 
Number genes 1762 2252 1786 

Table 1: Genes binned into groups by number of exons per gene 

We see fairly similar ROC curves (Figure 4), with discrimination improving with 
larger number of exons per gene, possibly because the Plier estimate of gene 
signal is more stable with a larger number of exons. 
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Figure 4: ROC curves for genes binned by size using MIDAS in the Tissue Panel 

V.D. Application in Practice 
In practice, using exon-level detection instead of gene-level detection forces the 
issue of multiple comparisons, where the larger the number of exons in the gene, 
the greater the chance of high statistical significance by chance alone. 

V.D.1 P-values 
In practice it is also desirable to use p-values.  Using MIDAS on the tissue panel 
data, the ANOVA F-statistic gives p-values that are about 3 times too low (Figure 
5), so in practice one would not want to take p-values too seriously.  Different 
structure in replicates and sampling might not give the same relation. 

We have also observed that when using the method on RefSeq genes, highly 
significant p-values can be associated with exons and genes that consistently 
exhibit low expression across sample types (model failures as discussed in 
Section  IV).  P-values can also be high when an exon from one gene is 
incorrectly assigned to another gene.  While the ratio of exon signal to gene is 
variable, observing a very high ratio in one or more of the sample types is an 
indication that an error of this type may have occurred. 
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Figure 5: Comparison of Empirical p-Values with Theoretical p-Values 
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