Applied Biosystems
DNA Sequencing Analysis ソフトウェア
Version 5.1 for Windows® XP and 2000

ユーザーガイド
Information in this document is subject to change without notice. Applied Biosystems assumes no responsibility for any errors that may appear in this document. This document is believed to be complete and accurate at the time of publication. In no event shall Applied Biosystems be liable for incidental, special, multiple, or consequential damages in connection with or arising from the use of this document.

Notice to Purchaser: License Disclaimer

Purchase of this software product alone does not imply any license under any process, instrument or other apparatus, system, composition, reagent or kit rights under patent claims owned or otherwise controlled by Applera Corporation, either expressly, or by estoppel.

TRADEMARKS:

Applied Biosystems, ABI PRISM, BigDye, Primer Express, and SeqScape are registered trademarks of Applera Corporation or its subsidiaries in the U.S. and/or certain other countries.

AB (Design) and Appler are trademarks of Applera Corporation or its subsidiaries in the U.S. and/or certain other countries.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other trademarks are the sole property of their respective owners.
目次

まえがき
このガイドの使い方 ............................................................... vii
詳細情報の入手方法 ............................................................. viii
サービスとサポートの入手方法 ............................................... ix

安全に関する情報
安全に関する表記法 ............................................................. xii
装置の一般的安全事項 .......................................................... xiii
職場環境の安全性 ............................................................... xiii

第1章  はじめに
ソフトウェア登録カードの記入 ............................................. 1-2
必要なハードウェアおよびソフトウェア ................................... 1-3
Sequencing Analysis ソフトウェアのインストール ...................... 1-4
Sequencing Analysis ソフトウェアを初めて起動する ................... 1-8
ユーザおよびオーディット トレールの設定 ............................... 1-11
310 マトリックスおよび DyeSet/Primer ファイルのコピー ............ 1-16
377 マトリックス ファイルのコピー ....................................... 1-21
サンプルの自動解析 ........................................................... 1-23
Sequencing Analysis ソフトウェアと Primer Express ソフトウェア .... 1-24

第2章  ソフトウェアの概要
Sequencing Analysis ソフトウェアについて ............................ 2-2
新しい機能 ................................................................................. 2-2
ソフトウェアの概要 ............................................................... 2-4
操作の概要 ................................................................................. 2-12

第3章  Sample Manager のサンプル ファイル
Sequencing Analysis ソフトウェアの起動 .................................. 3-2
サンプルファイルについて ....................................................... 3-4
サンプルファイルの Analysis Defaults の作成 ......................... 3-5
Sample Manager へのサンプルファイルの追加 ......................... 3-9
Sample Manager からのサンプルの削除 ................................... 3-11
サンプルウィンドウのビュー ................................................... 3-13
「 Annotation 」ビュー ............................................................. 3-14
第 4 章 サンプルの表示と編集
解析結果の閲覧 ......................................................... 4-2
ズーム コマンドの使用 ................................................. 4-4
データ ポイントの値の決定 ......................................... 4-6
塩基番号の表示 ..................................................... 4-7
Clear Range の変更 ................................................... 4-7
パターンの検索 ....................................................... 4-10
「Electropherogram」ビューにおけるオリジナル データの表示 ......................... 4-11
データの相補鎖の表示 ............................................. 4-12
Quality Value の表示 ............................................... 4-13
解析されたデータの編集 ........................................... 4-14
サンプル ファイルの保存 ........................................ 4-15
サンプル ウィンドウ ビューの印刷 .................................. 4-17
印刷されたエレクトロフェログラムの表示 ................................ 4-21

第 5 章 Sample Manager の使用
Sample Manager について ........................................... 5-2
「Show」チェック ボックス .......................................... 5-4
Sample File Name ................................................... 5-5
Sample Name ......................................................... 5-5
データ プロセッシング パラメータ .................................. 5-6
解析パラメータ ..................................................... 5-9
計算結果 .............................................................. 5-15
解析パラメータの変更 ........................................... 5-17
Sample Manager からの解析パラメータの変更 ................................ 5-18
Analysis Protocol における解析パラメータの変更 ................................. 5-21

第 6 章 Quality Value
Quality Value について ............................................... 6-2
Quality Value の表示 ............................................. 6-4
Quality Value による塩基の編集 .................................... 6-7
第7章 アナリシス レポート
アナリシス レポートについて ...................................................... 7-2
アナリシス レポートの表示 ...................................................... 7-6
表示のカスタマイズ ............................................................... 7-7
アナリシス レポートの印刷とエクスポート .................................. 7-9

第8章 Analysis Protocol、オプション、および Analysis Defaults
Analysis Protocol について ...................................................... 8-2
Analysis Protocol の項目 ......................................................... 8-3
Analysis Protocol の作成と編集 .............................................. 8-11
Analysis Protocol のデータへの適用 ....................................... 8-15
Data Collection ソフトウェアと Sequencing Analysis ソフトウェア間 の Analysis Protocol の共有 .................. 8-16
Analysis Defaults ................................................................. 8-17
Analysis Defaults の編集および適用 ...................................... 8-19
Options ............................................................................... 8-21
シーケンス ファイル形式の変更方法 ...................................... 8-26
データ プロセシング パラメータの変更方法 ............................. 8-26
解析パラメータの変更方法 .................................................... 8-27
Analysis Protocol 設定の変更方法 ........................................ 8-28

第9章 Display Settings
Display Settings について ...................................................... 9-2
「Bases」タブ ................................................................. 9-3
「Data」タブ .................................................................. 9-6
コントロール ボタン .......................................................... 9-8
「Display Settings」の変更 ..................................................... 9-9

第10章 Matrix Maker
Sequencing Analysis におけるマトリックス ファイルの作成 ........ 10-2
Data Collection ソフトウェア用マトリックス ファイルの複製 .... 10-5

第11章 310 サンプル ファイルの自動解析
310 サンプル ファイルの自動解析 ........................................ 11-2
ソフトウェアの自動解析設定 .................................................. 11-3
自動解析の機能 ................................................................ 11-6
まえがき

このガイドの使い方

このマニュアルの目的 『Applied Biosystems DNA Sequencing Analysis Software v5.1 User Guide』は、シーケンスデータの解析および閲覧に関する情報を提供します。

対象となるユーザ このマニュアルは、DNA シーケンス データの解析、再解析、閲覧および編集を行う、初心者および熟練ユーザを対象にしています。

前提条件 このマニュアルでは、読者が次の知識を備えていることを前提としています。
• Microsoft® Windows® XP または Windows® 2000 オペレーティングシステム
• DNA シーケンスの検出および解析手法
• DNA およびアミノ酸のコーディング規約

表記法 このマニュアルでは、次の表記法を使用しています。
• 太字は、ユーザの行う操作を示します。たとえば、次のとおりです。
残りの各フィールドについて、0 を入力し、[Enter] キーを押します。
• ゴシック体で表記されている言葉は、初出または重要な語を示し、強調しています。たとえば、次のとおりです。
解析の前に、必ず新しいマトリックスを調整してください。
• 右三角カッコ (>) は、ドロップダウン メニューまたはショートカット メニューで連続して選択するコマンドを区切って示しています。たとえば、次のとおりです。
「File」 > 「Open」 > 「Spot Set」を選択します。
サンプル列を右クリックし、「View Filter」 > 「View All Runs」を選択します。

- は、ツールバーのボタンを示しています。たとえば、次のとおりです。
(Start Analysis) をクリックします。
ユーザへの注意事項

Applied Biosystems ユーザ マニュアルでは、2 種類の注意事項が記載されています。各注意事項は、次のような特定のレベルの注意と対応が必要なことを示しています。

注： 製品を使用する上で役に立ちますが、必須ではない情報を記述しています。

重要！ 装置の適切な操作、ケミストリ キットの正しい使用法、化学物質の安全な使用法に関する必要な情報を記述しています。

ユーザへの注意事項の例を次に示します。

注： カラムのサイズは、ランタイムに影響します。

注： キャリブレーション機能は、Control Console でも使用できます。

重要！ クライアントがデータベースに接続していることを確認するには、有効な Oracle ユーザ ID とパスワードが必要です。

重要！ 1 枚の 96 ウェル マイクロタイター プレートに対して、それぞれ 1 つの「Sample Entry」スプレッドシートを作成する必要があります。

詳細情報の入手方法

関連資料

本製品には、次の関連資料が同梱されています。

Applied Biosystems Sequencing Analysis Software v5.1 Quick Reference Card — ソフトウェアを使用して結果を解析および閲覧する方法が簡潔に説明されています。

このマニュアルのポータブル ドキュメント フォーマット (PDF) 版および上記の Applied Biosystems ドキュメントは、Applied Biosystems Sequencing Analysis Software v5.1 インストール CD にも収録されています。

注： 詳細については、ix ページの「サービスとサポートの入手方法」を参照してください。

連絡先

Applied Biosystems では、弊社のユーザ マニュアルをより使いやすいものにするため、お客様からのご意見、ご要望をお待ちしております。次のようなメール アドレス宛にお送りください。

jptechsupport@appliedbiosystems.com
サービスとサポートの入手方法

すべての地域における最新サービスおよびサポート情報を入手するには、
http://www.appliedbiosystems.co.jpにアクセスし、「カスタマーサポート」のリンクをクリックしてください。

「カスタマーサポート」ページでは、次のことが可能です。

- よくある質問（FAQ）を検索する
- テクニカルサポートに質問を直接送信する
- Applied Biosystemsユーザマニュアル、MSDS、解説証明、およびその他の関連資料を注文する
- PDF文書をダウンロードする
- 顧客トレーニングに関する情報を入手する
- ソフトウェアアップデートおよびパッチをダウンロードする

さらに、「カスタマーサポート」ページには、世界各地のApplied Biosystemsテクニカルサービスおよびサポート機関の連絡先電話番号やファックス番号も掲載されています。
安全に関する情報

この章は、次の項目から構成されています。

安全に関する表記法 .................................................. xii
装置の一般的安全事項 ............................................. xiii
職場環境の安全性 .................................................. xiii
安全に関する表記法

注意を促す語句  Applied Biosystems ユーザマニュアルでは、関連する危険に対して注意が必要な箇所に、4 種類の注意を促す語句を表示しています。それぞれの語句は、警告の程度を表します。

注意を促す語句の定義

重要！ - 装置の適切な操作、ケミストリキットの正しい使用、化学物質の安全な使用に必要な情報を示します。

！注意 - 回避しないと、軽傷または中程度の障害を招くことがある潜在的に危険な状況を示します。危険な行為に対して警告するときにも使用されます。

！警告 - 回避しないと、死亡または重傷を招く可能性がある潜在的に危険な状況を示します。

！危険 - 回避しないと、死亡または重傷を招く切迫した危険な状況を示します。この語句が使用されるのは、極度に危険な状況に限られます。

例

重要、注意、および警告の注意を促す語句の使用例を次に示します。

重要！サンプル名、ランフォルダ名、パス名に使用できる文字数は、合計で 250 文字未満です。

！注意 筋骨格系および反復動作による障害の危険 これらの危険は、反復動作、不自然な姿勢、激しい労作、不健康な位置での静止状態、接触圧力などの職場環境要素を含みますが、これらに限定されない潜在的な危険要素によっても引き起こされるものです。

！警告 補助人員なしに、コンピュータやモニタの移動や持ち上げ作業を行わないでください。コンピュータやモニタの重量によっては、移動や持ち上げに 2 名またはそれ以上の人員を要します。
装置の一般的安全事項

警告 人身事故の危険 本製品は、このマニュアルの指示どおりに使用してください。Applied Biosystems が指定した以外の方法で装置を使用すると、人身事故や装置の損傷を引き起こす可能性があります。

警告 補助人員なしに、コンピュータやモニタの移動や持ち上げ作業を行わないでください。コンピュータやモニタの重量によっては、移動や持ち上げに 2 名またはそれ以上の人員を要します。

コンピュータやモニタを持ち上げる際には、次の事柄を確認してください。

- 持ち上げる際は、コンピュータやモニタをしっかりと無理のないようにつかんでください。
- コンピュータやモニタの移動経路に物を置かないでください。
- 持ち上げながら、胴体をひねらないでください。
- 持上げは脚を使い、背中は自然に伸ばした状態を保てください。
- 持上げや運搬作業を開始する前に、持ち上げと移動の連携を作業者どうしで打ち合わせてください。
- 棚包箱から直接コンピュータやモニタを持ち上げないでください。1 人が慎重に箱の側面を傾けて静止させている間に、もう 1 人がコンピュータやモニタをスライドさせて取り出します。

職場環境の安全性

正しい人間工学に基づいて職場環境を配置することにより、疲労や痛み、緊張を軽減し、予防できます。職場環境を正しく配置することで、これらの苦痛を軽減し、自然でリラックスできる作業ポジションを推進してください。

注意 筋骨格系および反復動作による障害の危険 これらの危険は、反復動作、不自然な姿勢、激しい労作、不健康な位置での静止状態、接触圧力などの職場環境要素を含みますが、これらに限定されない潜在的な危険要素によっても引き起こされるものです。

筋骨格系および反復動作による障害の危険を最小限にするために、次の事柄を遵守してください。

- ニュートラルな作業ポジションで身体を楽に支える機器を使用し、キーボード、モニタ、マウスに快適に手が届くようにします。
- キーボード、マウス、モニタを適切な位置に配置し、身体と頭部の姿勢がリラックスするようにします。
はじめに

この章では、次の項目について説明します。

ソフトウェア登録カードの記入.................................................................1-2
必要なハードウェアおよびソフトウェア.......................................................1-3
Sequencing Analysis ソフトウェアのインストール.......................................1-4
Sequencing Analysis ソフトウェアを初めて起動する....................................1-8
ユーザおよびオーディット トレールの設定.....................................................1-11
310 マトリックスおよび DyeSet/Primer ファイルのコピー..............................1-16
377 マトリックス ファイルのコピー..............................................................1-21
サンプルの自動解析..............................................................................1-23
Sequencing Analysis ソフトウェアと Primer Express ソフトウェア....................1-24
ソフトウェア登録カードの記入

ライセンスと保証
作業を始める前に、付録 F「Software Warranty Information」をお読みください。この付録では、ソフトウェアに関する権利と義務が説明されています。

ソフトウェアの登録
ご使用の ABI PRISM® Sequencing Analysis ソフトウェア v5.1 を登録するには、登録カード（このソフトウェア パッケージに同梱されています）に記入し、Applied Biosystems までご返送ください。

ソフトウェアを登録すると、Applied Biosystems から、ソフトウェア アップデートの通知や、Sequencing Analysis ソフトウェア v5.1 の所有者に固有の最新情報をすべて受信できるようになります。

製品登録番号は、登録カードに記載されています。登録カードを返送する前に、この番号を必ず次の欄に記入しておいてください。

| 登録番号： |
必要なハードウェアおよびソフトウェア

はじめに Sequencing Analysis ソフトウェアは、次のコンピュータにインストールできます。

- Applied Biosystems 3730/3730xl DNA Analyzer または ABI PRISM® 3100/3100-Avant ジェ
  ネティックアナライザに接続されており、Microsoft® Windows® 2000 上で Data Collection
  バージョン 2.0 を実行可能なコンピュータ
- ABI PRISM® ジェネティックアナライザに接続されており、Microsoft® Windows® XP また
  は 2000 オペレーティングシステムを使用するコンピュータ
- 次に示す最低限必要な条件が満たされている場合に限り、データ解析専用のコンピュータ

必要なシステム ご使用の装置または解析コンピュータ上で Windows XP / Windows 2000 プラットフォーム版
Sequencing Analysis ソフトウェア v5.1 を実行するために必要なシステムは、次のとおりです。

注：記載されているのは最低限必要な条件です。一般的には、メモリ、画面サイズが大きく、
処理能力が高いほど、プログラムのパフォーマンスが向上します。

<table>
<thead>
<tr>
<th>システム コンポーネント</th>
<th>要件</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>733 MHz 以上の Pentium® III または IV プロセッサ。このソフトウェアは、デュアル プロセッサまたは Intel Xeon® チップセット搭載のコンピュータでは動作しません。</td>
</tr>
<tr>
<td>CD-ROM ドライブ</td>
<td>装備されていること</td>
</tr>
<tr>
<td>オペレーティングシステム</td>
<td>Windows XP Service Pack 1 または Windows 2000 Service Pack 3</td>
</tr>
<tr>
<td>RAM</td>
<td>512 MB 以上</td>
</tr>
<tr>
<td>プリンタ</td>
<td>HP® 4600、8100、990cxl、または Epson® 980 プリンタを推奨</td>
</tr>
<tr>
<td>モニタ</td>
<td>17 インチ以上のモニタを推奨</td>
</tr>
<tr>
<td></td>
<td>1024 x 768 以上の解像度を推奨</td>
</tr>
</tbody>
</table>
| ディスク空き領域     | ハード ドライブには 1 GB の空き領域が必要です。Sequencing Analysis ソフトウェア v5.1 用に 75 MB のディスク空き領域、すべてのサンプル ファイル用に十分な空き領域が必要です。
データの保存に必要な空き容量は主に、作成、保存するデータの量によっで決まります。
Sequencing Analysis ソフトウェアのデータファイルは、ソフトウェアがインストールされた領域に保存されるため、ファイル用の十分な空
き領域があるパーティションに Sequencing Analysis ソフトウェアをインストールしてください。 |

ハード ドライブ パーティション
インストールはデフォルトで、次の場所にファイルを保存します。

ドライブ名：\AppliedBiosystems\SeqA5.1

ドライブ名は、次の条件によって決まります。インストールは、ほかの Applied Biosystems
ソフトウェアによってインストールされた Applied Biosystems フォルダを検索します。

- 該当するフォルダが存在する場合、そこに Sequencing Analysis ソフトウェアがインストールされます。
- 該当するフォルダが存在しない場合、デフォルトの D:\AppliedBiosystems が使用されま
す。D ドライブが存在しない場合、C:\AppliedBiosystems がインストール先として使用されます。
Sequencing Analysis ソフトウェアのインストール

インストールの前に インストールの準備をするには

1. システムが最低限必要な条件を満たしていることを確認します（1-3 ページの「必要なハードウェアおよびソフトウェア」を参照してください）。

2. すべてのウイルス対策ソフトウェアを一時的に終了します。

3. すべてのプログラム（Applied Biosystems 3730/3730xl Data Collection、ABI PRISM® 310/3100-Avant Data Collection ソフトウェアを除く）を終了します。

重要！Applied Biosystems 3730/3730xl DNA Analyzer または ABI PRISM® 310/3100-Avant ジェネティック アナライザに接続されているコンピュータに Sequencing Analysis ソフトウェア v5.1 を正しくインストールするためには、Data Collection ソフトウェアが起動している必要があります。Data Collection ソフトウェアが起動していない場合、Sequencing Analysis ソフトウェアは Data Service ソフトウェアに認識されません。

旧バージョンのソフトウェアからのアップグレード

Sequencing Analysis ソフトウェア v5.0

Sequencing Analysis v5.1 インストーラは、ソフトウェアを v5.0 から 5.1 に自動的にアップグレードします。

Sequencing Analysis ソフトウェア v3.7

システムに Sequencing Analysis ソフトウェア v3.7 がインストールされている場合、アンインストールしてから Sequencing Analysis v5.1 をインストールしてください。
Sequencing Analysis ソフトウェアのインストール

1. Windows XP / Windows 2000 プラットフォーム版 Sequencing Analysis ソフトウェア v5.1 の CD-ROM を CD ドライブに挿入します。
   インストーラが自動的に起動し、次のウィンドウが開きます。

2. 「Next」をクリックします。
3. 「License Agreement」ウィンドウが開いたら、内容を読んで「Yes」をクリックします。
4. 「Information」ウィンドウで ReadMe ファイルを読み、「Next」をクリックします。
5. 「Choose Destination Location」ウィンドウで「Next」をクリックします。

6. 「Current Settings」ページで情報を確認し、「Next」をクリックします。

ファイルがハード シナムにコピーされます。

7. 次のウィンドウ開いたら、「Finish」をクリックします。

デスクトップと「Start」メニューに Sequencing Analysis 5.1 のショート カットが追加されます。
### Sequencing Analysis ソフトウェアの削除

アンインストール プロセスにより、Sequencing Analysis ソフトウェア v5.1 によってインストールされたフォルダとファイルがすべて削除されます。

インストールされた Sequencing Analysis ソフトウェアを削除するには

重要！3730/3730xl DNA Analyzer または 3100/3100-Avant ジェネティック アナライザに接続されているコンピュータからソフトウェアをアンインストールする場合、Data Collection ソフトウェアを閉じてください。

注：アンインストールを実行する前に、他のプログラムはすべて閉じてください。

1. 「Start」 > 「Programs」 > 「Applied Biosystems」 > 「Sequence Analysis 5.1」 > 「Uninstall Sequencing Analysis 5.1」を選択します。次のダイアログ ボックスが開きます。

![InstallShield Wizard](image)

2. 「Remove」を選択し、「Next」をクリックします。

3. 「Confirm Uninstall」ダイアログ ボックスで「OK」をクリックします。

![Confirm Uninstall](image)

ファイルがハード ドライブからアンインストールされます。

4. 「Maintenance Complete」ダイアログ ボックスで「Finish」をクリックします。

重要！元のインストール元から移動しているファイルやフォルダは、アンインストールプロセスによって削除されない場合があります。

Applied Biosystems DNA Sequencing Analysis ソフトウェア v5.1 ユーザーガイド 1-7
Sequencing Analysis ソフトウェアを初めて起動する

作業を開始する前に Sequencing Analysis ソフトウェアには、ユーザログインプロセスが用意されています。ソフトウェアを最初に起動したとき、アドミニストレーターアカウントを作成する登録ダイアログボックスが表示されます。Sequencing Analysis ソフトウェアに Admin としてログインし、作成したパスワードを入力してください。

新規ユーザを作成するには、Admin としてログインする必要があります。ユーザ名で Sequencing Analysis ソフトウェアにログインした場合、各ユーザが作成したそれぞれのプロジェクトに対して行った作業の経過をたどることができます。

ソフトウェアを使用する各ユーザのカテゴリーの権限の詳細については、付録 D「ユーザの権限」を参照してください。

ファイル名規約 一部の英数文字は、ユーザ名またはファイル名に使用できません。使用できない文字は次のとおりです。
スペース
\/: * ? " < > |

これらの文字のいずれかを使用した場合、エラーメッセージが表示されます。続行するには、使用できない文字を削除する必要があります。

Sequencing Analysis ソフトウェアの起動

1. Sequencing Analysis ソフトウェア v5.1 をスタートするには、デスクトップ上にある Sequencing Analysis v5.1 のショートカットをダブルクリックするか、「Start」＞「Programs」＞「Applied Biosystems」＞「Sequencing Analysis 5.1」＞「Sequencing Analysis 5.1」を選択します。

2. 「Product Registration」ダイアログボックスで、テキストフィールドにすべての情報を入力します。「User Name」と「Password」の長さは 6～15 文字にする必要があります。

最初に作成されたユーザには、アドミニストレータ権限が自動的に割り当てられます。
3. ソフトウェアに同様の登録カードに記載された登録コードを入力します。

4. 「OK」をクリックします。
   システムが読み込まれている間、スプラッシュ画面が開き、次に「Log In」ダイアログボックスが開きます。

5. ユーザ名とパスワードを再度入力します。

6. 「OK」をクリックします。
   「License」ダイアログボックスが開きます。

![ダイアログボックスの画像](image-url)
7. ライセンス契約を読み、「Accept」をクリックします。
Sequencing Analysis のメインウィンドウが開きます。
ユーザおよびオーディット トレールの設定

新規ユーザの作成

Sequencing Analysis ソフトウェアは各ユーザの設定を追跡するため、Applied Biosystems では、コンピュータ上の Sequencing Analysis ソフトウェアを使用する個人ごとにユーザを作成することをお勧めします。ユーザには、アドミニストレータ (Admin)、サイエンティスト (Scientist)、アナリスト (Analyst) の 3 つのレベルがあります。「Users」タブを使用すると、これらのユーザのユーザ名およびアクセス権限をエクスポートできます。

重要！アドミニストレータは、「Users」タブの情報を設定および変更できる唯一のユーザです。このタブの選択項目、他のすべてのユーザは使用不可能になっています。

新規ユーザを設定するには

1. 「Tools」> 「Options」を選択して、「Options」ダイアログ ボックスを開きます。
2. 「Users」タブを選択し、「New」をクリックします。

3. 適切なユーザ名、パスワード、姓、名前を入力し、「User Group」ドロップダウン リストからユーザのレベルを選択します。

注：「User Name」には英数字のみを入力してください。このフィールドには、Microsoft® Windows ファイルシステムに準拠していないスペースや文字を含めることができません。1-8 ページの「ファイル名規約」を参照してください。

新規ユーザが「Users」タブのリストに表示されます。

Sequencing Analysis ソフトウェアを終了してアプリケーションを再起動した後、新規ユーザがログインできるようになります。

Authentication (認証) & Audit (監査) の設定

Administrator グループに属するユーザは、「Authentication & Audit」タブでアプリケーションのセキュリティ機能のデフォルト設定を変更することができます。

注：アドミニストレータは、「Authentication & Audit」タブの情報を設定および変更できる唯一のユーザです。このタブの選択項目、他のすべてのユーザは使用不可能になっています。

「Authentication & Audit」ペインを使用すると、塩基の変更やプロセスなどの変更を追跡することができます。追跡を実行するには、「Audit Trail On」をチェックする必要があります。
認証（Authentication）と監査（Audit）を設定するには

1. 「Authentication & Audit」タブを選択して、「Authentication Settings」のデフォルトを変更します。

![Authentication & Audit Settings](image)

2. 「Authentication Settings」ページにおけるフィールドの説明は次のとおりです。

   a. ユーザが不正なパスワードまたはユーザ名を、「Lockout user after invalid login attempts」フィールドで選択されている回数入力した場合、ロックアウトされます。数を入力して変更するか、デフォルト設定のままにします。

   b. 「within minutes」フィールドに入力された時間内に最大回数の試行が行われた場合、ユーザはロックアウトされます。数を入力して変更するか、デフォルト設定のままにします。

   c. 「Maintain lockout for minutes」フィールドには、ユーザが Sequencing Analysis ソフトウェアからロックアウトされた後、再度ログインできるようになるまでに必要な経過時間を指定します。数を入力して変更するか、デフォルト設定のままにします。

   d. 「Timeout Feature On」チェックボックスが選択されている場合、ソフトウェアがタイムアウトになると、ユーザはソフトウェアを使用するために再度ログインする必要があります。タイムアウト時間を入力して変更するか、デフォルト設定のままにします。

   e. 「Change password every days」フィールドでは、ユーザが新規パスワードの入力を求められるようになるまでの日数を指定します。数を入力して変更するか、デフォルト設定のままにします。

3. 「Audit Trail」ページで「Audit Trail On」チェックボックスを選択して、指定された理由が発生すると常にダイアログボックスが開くようにします。
4. 「Audit Reason」ペインで、オーディット トレールを行う理由を入力します。
   a. フィールドをダブルクリックするとハイライトして、「New」をクリックします。
   - 「Reason」フィールドに、プロジェクトに対して行われた変更を識別するための理由を入力します。
   c. 必要に応じて理由（Reason）の説明（Description）を入力します。
   d. Audit Reason Editor で「OK」をクリックします。「Options」ダイアログ ボックスのリストに最初の理由が表示されます。
   e. データ ビューのいずれかに変更が行われるたびに、「Audit Reason Editor」ダイアログ ボックスが開きます。ドロップダウン リストから変更の理由（Reason）を選択してください。

5. 「Options」ダイアログ ボックスで「OK」をクリックして、認証（authentication）と監査（audit）の設定を保存します。

注：「Authentication & Audit」の設定は、コンピュータ間でインポートまたはエクスポートすることが可能です。たとえば、アドミニストレータは、多数のユーザに対して認証および監査情報を設定した後、すべてのファイルを選択し、Sequencing Analysis ソフトウェアを使用する他のシステムにエクスポートすることができます。
ユーザ情報の変更

重要！アドミニアストレータは、「Users」タブの情報を設定および変更できる唯一のユーザです。このタブの選択項目は、他のすべてのユーザは使用不可能になっています。

ユーザの情報を変更するには

1. 「Tools」 > 「Options」を選択し、「Users」タブを選択します。
2. リスト内の名前をダブルクリックし、「User Management」ダイアログボックスを開きます。
3. ユーザ情報を変更または修正し、「OK」をクリックします。
4. 必要に応じて、「Options」ダイアログボックスの「Export」ボタンをクリックし、アプリケーション設定や単一または複数ユーザの設定を圧縮された .ctf 形式でエクスポートします。
5. 「Export User」ダイアログボックスにファイルのエクスポート先のパスを人力し、「Export」をクリックします。
6. 「OK」をクリックして「Options」ダイアログボックスを閉じます。

注：このプロセスは、最初のアドミニアストレータが、追加のユーザまたは別のアドミニアストレータを設定するために使用されます。コンピュータ間でユーザ設定をインポートまたはエクスポートすることが可能です。たとえば、アドミニアストレータは、多数のユーザに対してユーザ情報設定した後、すべてのユーザファイルを選択し、Sequencing Analysis ソフトウェアを使用する他のシステムにエクスポートすることができます。
新規ユーザのログイン

インストールと設定が完了すると、新規ユーザがソフトウェアにログインできるようになります。

ソフトウェアにログインするには

1. デスクトップ上のショートカット[Sequencing Analysis]をダブルクリックして、Sequencing Analysisソフトウェアを起動します。
2. 「Log In」ダイアログボックスが開いて、最後に使用したユーザの名前が表示されます。ユーザ名とパスワードを入力し、「OK」をクリックします。

ユーザパスワードの変更

すべてのユーザグループ（アドミニストレータ、サイエンティスト、アナリスト）が、各自のパスワードを変更できます。

現在のユーザのパスワードを変更するには

1. ソフトウェアにログインします。
2. 「Tools」>「Change Password」を選択します。
3. 現在のパスワードを入力します。
4. 新規パスワードを入力し、再度入力します。
5. 「OK」をクリックします。
310 マトリックスおよび DyeSet/Primer ファイルのコピー

注：ABI PRISM® 310 ジェネティック アナライザ以外で作成されたサンプル ファイルを解析する場合、この節を読む必要はありません。

Matrix および Mobility フォルダの場所

Sequencing Analysis ソフトウェア v3.7 から Sequencing Analysis ソフトウェア v5.1 にアップグレードする場合、マトリックスと DyeSet/Primer（モビリティ）ファイルを新規のフォルダにコピーする必要があります。

Sequencing Analysis ソフトウェア v3.7 の フォルダ

Sequencing Analysis ソフトウェア v3.7 をインストールする場合は、D: \ AppliedBio（Data Collection ソフトウェアと同じフォルダ）です。両方のアプリケーションが、Matrix フォルダと Mobility フォルダを含む Shared フォルダにアクセスします。パスは次のとおりです。
- D: \ AppliedBio\Shared\Analysis\Basecaller\Matrix
- D: \ AppliedBio\Shared\Analysis\Basecaller\Mobility

Sequencing Analysis ソフトウェア v5.1 をインストールした後の フォルダ

Sequencing Analysis ソフトウェア v5.1（SeqA v5.1）がインストールされると、D: \ AppliedBio フォルダの Basecaller フォルダ内でフォルダの名前が変更され、新規フォルダが作成されます。1-17 ページの図 1-1 を参照してください。

<table>
<thead>
<tr>
<th>図 1-1 での番号</th>
<th>Basecaller フォルダ内</th>
<th>フォルダの内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Matrix フォルダは Old_Matrix フォルダという名前に変更されます。</td>
<td>元の 310 マトリックス ファイル</td>
</tr>
<tr>
<td>2</td>
<td>新規の Matrix フォルダが作成されます。</td>
<td>SeqA v5.1 によってインストールされた TestMatrix ファイル</td>
</tr>
<tr>
<td>3</td>
<td>Mobility フォルダは、Old_Mobility フォルダという名前に変更されます。</td>
<td>Data Collection および SeqA v3.7 ソフトウェアによってインストールされた元の DyeSet/Primer ファイル</td>
</tr>
<tr>
<td>4</td>
<td>新規の Mobility フォルダが作成されます。</td>
<td>SeqA v5.1 によってインストールおよび使用された 310 DyeSet/Primer ファイル</td>
</tr>
</tbody>
</table>

Sequencing Analysis ソフトウェアのインストール後のパスは次のとおりです。
- D: \ AppliedBio\Shared\Analysis\Basecaller\Old_Matrix
- D: \ AppliedBio\Shared\Analysis\Basecaller\Old_Mobility
Sequencing Analysis ソフトウェア v5.1 は次の場所にインストールされます。
- D:\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Matrix
- D:\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Mobility

場所が変更されているため、Sequencing Analysis ソフトウェア v5.1 は、Data Collection で使用される Shared フォルダにアクセスすることができます。
ファイルのコピーが必要

Data Collection ソフトウェアと Sequencing Analysis ソフトウェア v5.1 の両方でマトリックスファイルを使用できるようにするには、Sequencing Analysis ソフトウェアと Data Collectionソフトウェア両方のフォルダ内の Matrix フォルダにマトリックスファイルをコピーする必要があります（図 1-2）。

![図 1-2 310 マトリックスファイルのコピー先](D:\AppliedBio\Shared\Analysis\Basecaller\Matrix)

元の DyeSet/Primer ファイルのうち引き続き使用するものがあれば、そのファイルのコピーも必要になります（図 1-3）。

![図 1-3 310 DyeSet/Primer ファイルのコピー先](D:\AppliedBio\Shared\Analysis\Basecaller\Mobility)

上記の作業により、次のことができるようになります。

- Data Collection サンプルシート上でのマトリックスファイルまたはモビリティファイルの選択。Data Collection ソフトウェアは引き続き Shared フォルダにアクセスできます。
- サンプルファイルの解析。解析ソフトウェアは、AppliedBiosystems フォルダ内の Matrixフォルダまたは Mobility フォルダにアクセスできます。

別のコンピュータにインストールされた Sequencing Analysis ソフトウェア v5.1

Sequencing Analysis ソフトウェア v5.1 を別のコンピュータにインストールした場合、インストール先は次のようになります。

ドライプ名: D:\AppliedBiosystems (1-3 ページの「ハード ドライブ パーティション」を参照)。

Sequencing Analysis フォルダ内の適切な Matrix フォルダと Mobility フォルダ内に、マトリックスと DyeSet/Primer ファイルをコピーする必要があります。さらに、装置に接続されているコンピュータからフロッピーディスクまたは CD にファイルをコピーした後、そのファイルを別の解析コンピュータ上の Sequencing Analysis フォルダ内にある適切な Matrix フォルダまたは Mobility フォルダにコピーする必要があります。
マトリックスファイルとDyeSet/Primerファイルのコピー

マトリックスファイルのコピー

1. Data Collectionでマトリックスファイルの場所に移動します。
   D:\AppliedBio\Shared\Analysis\Basecaller\Old_Matrix

2. Old_Matrixフォルダを開いて、コピーするマトリックスファイルを選択します。

3. [Ctrl]キーを押しながら[Ctrl]キーを押して、ファイルをクリップボードにコピーします（別の解析コンピュータを使用している場合、ファイルをフロッピーディスクまたはCDにコピーします）。

4. Old_MatrixフォルダからMatrixフォルダにマトリックスファイルをコピーします。
   a. Data Collectionソフトウェアで使用されるMatrixフォルダの場所に移動します。
      D:\AppliedBio\Shared\Analysis\Basecaller\Matrix

   b. [Ctrl]キーを押しながら[V]キーを押して、ファイルをMatrixフォルダ内にペーストします。

5. マトリックスファイルを、Data CollectionのOld_Matrixフォルダから、解析ソフトウェアで使用されるMatrixフォルダペーストします。
   a. 解析ソフトウェアで使用されるMatrixフォルダの場所に移動します。
      D:\AppliedBiosystems\SeqA5.1\AppSeqA5.1\bin\Basecaller\Matrix
b. [Ctrl] キーを押しながら [V] キーを押して、ファイルをフォルダにペーストするか、フロッピー ディスクまたは CD からコピーします。

モビリティ ファイルの コピー
モビリティ ファイルをコピーするには
1. Data Collection で DyeSet/Primer ファイルの場所に移動します。
   D:\AppliedBio\Shared\Analysis\Basecaller\Old_Mobility

2. Old_Mobility フォルダを開いて、コピーする DyeSet/Primer ファイルを選択します。

3. [Ctrl] キーを押しながら [C] キーを押して、ファイルをクリップボードにコピーします
   （別の解析コンピュータを使用している場合、ファイルをフロッピー ディスクまたは CD
   にコピーします）。

4. DyeSet/Primer ファイルを、Old_Mobility フォルダから Mobility フォルダにコピーしま

a. Data Collection ソフトウェアで使用される Mobility フォルダの場所に移動します。
   D:\AppliedBio\Shared\Analysis\Basecaller\Mobility

b. [Ctrl] キーを押しながら [V] キーを押して、ファイルを Mobility フォルダ内にペーストします。

5. DyeSet/Primer ファイルを、Data Collection の Old_Mobility フォルダから、解析ソフト

ウエアで使用される Mobility フォルダにペーストします。

a. 解析ソフトウェアで使用される Mobility フォルダの場所に移動します。
   D:\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Mobility

b. [Ctrl] キーを押しながら [V] キーを押して、ファイルをフォルダにペーストするか、フ
   ロッピー ディスクまたは CD からコピーします。

マトリックス ファイルとモビリティ ファイル
マトリックス ファイルと DyeSet/Primer ファイルが別のフォルダにコピーされている間に
Data Collection ソフトウェアと解析ソフトウェア（またはそのいずれか）が実行中であった場
合、アプリケーションを閉じて、再起動する必要があります。Data Collection ソフトウェアと
解析ソフトウェアは共に、Matrix、Mobility、その他すべてのフォルダの内容を起動時にのみ
読み込みます。
377 マトリックス ファイルのコピー

注：ABI PRISM® 377 DNA Sequencer 以外で作成されたサンプル ファイルを解析する場合、この節を読む必要はありません。

Matrix フォルダの場所
Sequencing Analysis ソフトウェア v3.7 から Sequencing Analysis ソフトウェア v5.1 にアップグレードする場合、マトリックス ファイルを新規のフォルダにコピーする必要があります。

Sequencing Analysis ソフトウェア v3.7 の Matrix フォルダの場所
Sequencing Analysis ソフトウェア v3.7 のインストール先は、D:\AppliedBio（Data Collection ソフトウェアと同じフォルダ）です。両方のアプリケーションが、Matrix フォルダを含む Shared フォルダにアクセスします。Matrix フォルダへのパスは次のとおりです。
D:\AppliedBio\Shared\Analysis\Basecaller\Matrix

Sequencing Analysis ソフトウェア v5.1 の Matrix フォルダの場所
Sequencing Analysis ソフトウェア v5.1 のインストール先は、次のとおりです。
D:\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Matrix

場所が変更されているため、Sequencing Analysis ソフトウェア v5.1 は、Data Collection で使われる Shared フォルダにアクセスすることができません。

マトリックス ファイルのコピーが必要
Data Collection ソフトウェアと Sequencing Analysis ソフトウェア v5.1 の両方でマトリックス ファイルを使用できるようにするには、Sequencing Analysis フォルダ内の Matrix フォルダにマトリックス ファイルのコピーを配置する必要があります（図 1-4）。

D:\AppliedBio\Shared\Analysis\Basecaller\Matrix

図 1-4 377 マトリックス ファイルのコピー先

上記の作業により、次のことができるようになります。
- Data Collection サンプル シート上のマトリックス ファイルの選択。Data Collection ソフトウェアは引き続き Shared フォルダにアクセスできます。
- サンプル ファイルの解析。解析ソフトウェアは、AppliedBiosystems フォルダ内の Matrix フォルダにアクセスできます。

別のコンピュータにインストールされた Sequencing Analysis ソフトウェア v5.1
Sequencing Analysis ソフトウェア v5.1 が別の解析コンピュータにインストールされた場合、インストール先は ドライブ名: \AppliedBiosystems になります（1-3 ページの「ハード ドライプ バーチャライゼーション」を参照）。マトリックス ファイルを、Sequencing Analysis フォルダ内の Matrix フォルダにコピーする必要があります。さらに、装置に接続されているコンピュータからフロッピーディスクまたは CD にファイルをコピーした後、そのファイルを別の解析コンピュータ上の Sequencing Analysis フォルダ内にある Matrix フォルダにコピーする必要があります。
マトリックスファイルのコピー
マトリックスファイルをコピーするには
1. Data Collectionでマトリックスファイルの場所に移動します。
   D:\AppliedBio\Shared\Analysis\Basecaller\Matrix
2. Matrixフォルダを開いて、コピーするマトリックスファイルを選択します。
3. [Ctrl]キーを押しながら[C]キーを押して、ファイルをクリップボードにコピーします（別の解析コンピュータを使用している場合、ファイルをフロッピーディスクまたはCDにコピーします）。
4. 解析ソフトウェアで使用されるMatrixフォルダの場所に移動します。
   D:\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Matrix
5. [Ctrl]キーを押しながら[V]キーを押して、ファイルをフォルダにペーストするか、フロッピーディスクまたはCDからコピーします。

マトリックスファイルの使用
マトリックスファイルがMatrixフォルダにコピーされている間に解析ソフトウェアが実行中であった場合、アプリケーションを閉じて、再起動する必要があります。解析ソフトウェアは、Matrixフォルダやその他すべてのフォルダの内容を起動時に読み込みます。
サンプルの自動解析

装置に接続されているコンピュータに Sequencing Analysis ソフトウェア v5.1 がインストールされている場合、Data Collection ソフトウェアで自動解析を設定する必要があります。

各装置と参照先は次のとおりです。

- 3730/3730xl DNA Analyzer
  『Applied Biosystems 3730/3730xl DNA Analyzers User Guide』（P/N 4331468）を参照してください。

- 3100/3100-Avant ジェネティック アナライザ
  『ABI PRISM® 3100/3100-Avant Genetic Analyzer User Guide for DNA Sequencing』（P/N 4347102）を参照してください。

- 310 ジェネティック アナライザ
  第 11 章「310 サンプル ファイルの自動解析」を参照してください。

注：ABI PRISM® 3700 DNA Analyzer または ABI PRISM® 377 DNA Sequencer では、サンプルの自動解析はサポートされていません。
Sequencing Analysis ソフトウェアとPrimer Express ソフトウェア

注：コンピュータ上に Primer Express® ソフトウェアをロードしていない場合、この節を読む必要はありません。

システム上に Sequencing Analysis のみが存在している場合、AB1 ファイル タイプは Sequencing Analysis ソフトウェアに関連付けられます。サンプル ファイルの名前またはアイコン（）をダブルクリックすると、Sequencing Analysis ソフトウェアがサンプル ファイルと共に自動的に開きます。

Sequencing Analysis ソフトウェアと Primer Express ソフトウェアの両方を使用している場合、インストールされた順番に応じて、AB1 ファイルは Sequencing Analysis ソフトウェアまたは Primer Express ソフトウェアに関連付けられます。

AB1 ファイル タイプに関連付けられたソフトウェアを変更するには

1. 「Start」 > 「Settings」 > 「Control Panel」を選択します。

   ![Control Panel](image1)

2. 「Folder Option」をダブルクリックし、「File Types」タブを選択します。

   ![Folder Options](image2)
3. 修正するファイルのタイプを選択し、「Change」をクリックします。「Open With」ダイアログボックスが開きます。

4. 使用するプログラムをハイライトし、「OK」をクリックします。「Folder Option」ダイアログボックスが開きます。

5. 「OK」をクリックします。
6. 「Control Panel」ウィンドウを閉じます。
第1章 はじめに
ソフトウェアの概要

この章では、次の項目について説明します。

Sequencing Analysis ソフトウェアについて .............................. 2-2
新しい機能 ............................................................................. 2-2
ソフトウェアの概要 ................................................................. 2-4
操作の概要 ............................................................................. 2-12
Sequencing Analysis ソフトウェアについて

Applied Biosystems Sequencing Analysis ソフトウェア v5.1 は、次のタスクを実行します。

- 塩基を読み取り
- KB Basecaller が使用されている場合、ミックスベースを定義して表示する
- KB Basecaller が使用されている場合、Quality Value を計算して表示する
- Clear Range を計算して表示する
- サンプル スコアを計算する
- ABI (.seq)、FASTA (.seq)、Phred (.phd.1)、および Standard Chromatogram Format (.scf)形式で出力ファイルを作成する
- サンプル解析統計を含むアナリシスレポートを生成する
- サンプルファイルごとにデータを印刷する
- アナリシスレポートを印刷する
- 塩基や Analysis Settings への変更をすべて追跡するオーディットトレールを作成する（有効な場合）

新しい機能

Sequencing Analysis ソフトウェア v5.1の新機能

Sequencing Analysis ソフトウェア v5.1 は、ABI Prism® Seqencing Analysis ソフトウェア v3.7および v5.0の後継バージョンです。次のような機能がアプリケーションに組み込まれています。

- ABI Prism® 310 ジェネティックアナライザの自動化をサポート
- ABI Prism® 3100/3100-Avant ジェネティックアナライザ（v2.0 Data Collection を使用する）の自動化をサポート
- ABI Prism® 3700 DNA Analyzer、ABI Prism® 377 DNA Sequencer、および ABI Prism® 310 ジェネティックアナライザで作成されたサンプルファイルの解析
- アプリケーションへの Make Matrix ユーティリティの組み込み
- 印刷機能の強化
- KB Basecaller v1.1
  - Quality Threshold が満たされていない場合、N を読み取るオプション
  - True Profile または Flat Profile でデータを処理するオプション
- 310、3100、および 3100-Avant システムで作成されたデータに対する KB Basecaller のサポート
- ファイル共有
  Master Analysis Protocol は、Sequencing Analysis ソフトウェアと3100/3100-Avant Data Collection ソフトウェアの間で共有されます。

- オーディットトレール
  塩基の変更のオーディットトレールを行うオプション機能です。オーディットトレール情報は、ユーザーが作業を行うたびに作成されます。
  - 塩基の変更
  - 塩基の削除または挿入
  - Analysis Settings の変更
  - サンプル名の変更
  - データの解析
Sequencing Analysis ソフトウェア v5.0 の
新機能

Sequencing Analysis ソフトウェア v5.0 には、次の主要な機能が組み込まれました。
- Sample Manager およびサンプル データ ウィンドウを含むウィンドウインタフェース
- KB Basecaller v1.0

KB Basecaller は、ベース コーリングの新しいアルゴリズムで、次の改良点と機能があります。
- ミックス ベースの計算
  ミックス ベースは、1 つの塩基の位置に 2 つの塩基が含まれることを意味します。これら
塩基には、適切な IUB コードが割り当てられます。
- 単一の塩基とミックス ベースの Quality Value (QV) の計算と表示
  QV は、Basecaller 精度の塩基当たりの推定値です。

- ファイル形式の追加
  ファイル形式は、Phred (.phd.1) および Standard Chromatogram Format (.scf) 形式です。

注：Standard Chromatogram Format 形式が作成された場合、ファイル名に拡張子 .scf は付加
されませんが、正しいファイル形式です。
- Raw Data と解析済みデータ両方のビューの水平、垂直方向のスクロールおよびズーム イン
もアウトも可能
- Sample Manager における「Sample File Name」カラムのサイズを変更可能
- 「Sample Manager」ペインと「Sample Navigator」ペインから複数のファイルを表示可能
- 複数のサンプルを水平方向にスクロール
- Sample Manager と Sample Navigator のビュー切り替え機能

- Analysis Protocol

Analysis Protocol は、解析とポスト プロセッシングに必要なすべての設定を保存します。こ
の設定により、Sequencing Analysis ソフトウェアの旧バージョンで使用された設定はすべ
て置換されます。プロトコールはサンプルファイルに保存されます。

Analysis Protocol には、次の 2 種類があります。
- サンプルあたりの Analysis Protocol – サンプルファイル内に保存されたプロトコール。
  これは編集が可能です。変更は、選択したサンプルのプロトコールのみに影響します。
- Master Analysis Protocol – どのサンプルにも関連付けられていません。これは、サンプ
ルにプロトコールが含まれない場合、「Apply to Selected Samples」機能または Analysis
Defaults にカッピングされ、割り当てられます。

- 「New Post Processing」オプション : Clear Range の計算

Clear Range は、5' と 3' の両未端でクオリティの低いまたはエラーが発生しやすいシー
ケンスを除外した後に残るシークエンスの領域です。
- 読み取りの長さ（LOR）の計算
  クオリティの高い塩基の長さの測定 LOR は、「Display Settings」ダイアログ ボックス内で
ユーザが定義可能で、「Analysis」レポートに表示されます。
- サンプル ソコアの計算
  サンプル スコアは QV から作成されます。そのサンプルの Clear Range シーケンスにおけ
る塩基の平均 Quality Value です。この情報はアナリシス レポート内に表示されます。
- アナリシス レポートの作成
  アナリシス レポートには、データ解析のステータスが表示されます。レポートは、トラプ
ルシューティングに役立ち、レポートを利用するとデータクオリティの評価を簡単に行う
ことができます。
- ファイル共有
  Master Analysis Protocol は、Sequencing Analysis ソフトウェアと 3730/3730xl Data
Collection ソフトウェアの間で共有されます。
ソフトウェアの概要

はじめに この節では、共通のソフトウェアアプリケーションウィンドウの概要を説明します。

Sequencing Analysis のメインウィンドウ Sequencing Analysis のメインウィンドウは、ソフトウェアを起動すると開きます。ここには、メニューバーと、よく使用される機能のボタンを含むツールバーがあります。すべての操作をこのウィンドウ内で実行します。

メニュー コマンドとツールバー アイコンの詳細については、付録 B「メニュー コマンドとツールバー ボタン」を参照してください。
「Sample Manager」ウィンドウ

- Sample Manager
- Sample Navigator

これらのペイン間を切り替えるには、[View] をクリックするか、「View」＞「Sample Manager」または「Sample Navigator」を選択します。

「Sample Manager」ペイン

「Sample Manager」ビューは、ソフトウェア起動時のデフォルトのビューです。

このペインには、サンプルと、各種の解析パラメータ値が含まれています。サンプルは、このウィンドウペインで表示、解析、編集、印刷、保存することができます。

解析パラメータは、「Sample Manager」または「Analysis Protocol」で変更できます。マトリックスファイルは 310 および 377 データにのみ使用されます。

「Show」チェックボックスを使用して、サンプルデータを表示します。

「Sample Manager」ペインに入っているサンプル

分割バーを使用して、「Sample Manager」ペインと「Sample View」ペインのサイズを調整します。

処理パラメータ

計算結果

タブを使用して、「Sample View」ペイン内のデータを表示します。

他のサンプルを表示するスクリュールバ

サンプルを表示するスクリュールバ

複数サンプルをまとめてスクリュールするスクリュールバ

<table>
<thead>
<tr>
<th>番号</th>
<th>サンプル名</th>
<th>サンプルコード</th>
<th>サイズ</th>
<th>容量</th>
<th>データ</th>
<th>関連概念</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Seq_000_00</td>
<td>Seq_000_0001</td>
<td>300</td>
<td>300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>Seq_000_01</td>
<td>Seq_000_0002</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>3</td>
<td>Seq_000_02</td>
<td>Seq_000_0003</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
</tr>
</tbody>
</table>

Sample Manager

Sample Navigator
「Sample Navigator」ペイン

「Sample Navigator」ビューに切り替えるには、「□」をクリックするか、「View」>「Sample Navigator」を選択します。

このペインには、サンプル名とサンプルビューが表示されます。サンプルは、このペインで編集して保存できます。

サンプルの詳細については、第3章「Sample Managerのサンプルファイル」を参照してください。
サンプルビューは、サンプルのデータ特性をすべて表示するときに使用します。サンプルビューの各タブと表示される情報は次のとおりです。

表2-1 サンプルビューのタブ

<table>
<thead>
<tr>
<th>タブ</th>
<th>表示される情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annotation</td>
<td>データとその解析に関する情報</td>
</tr>
<tr>
<td>Sequence</td>
<td>サンプルのシーケンス。キオリティバーとその値、オリジナルデータの表示はオプションです。読みやすくするために、シーケンスは10文字ごとにスペースで区切られて表示されます。</td>
</tr>
<tr>
<td>Features</td>
<td>計算されたClear Range</td>
</tr>
<tr>
<td>Electropherogram</td>
<td>サンプルの電気泳動グラフおよびベースコールデータ。品質バーとQuality Value、オリジナルデータの表示はオプションです。Clear Rangeから除外されたデータは灰色で表示されます。</td>
</tr>
<tr>
<td>Raw</td>
<td>装置によって検出された生のデータ</td>
</tr>
<tr>
<td>EPT</td>
<td>装置によって検出されたボルト、ワット、電流、および温度データ。</td>
</tr>
<tr>
<td>Audit</td>
<td>データの修正に関する情報（塩基の変更、削除、挿入、解析設定の変更、サンプル名の変更）。「Options」ダイアログボックスの「Authentication and Audit」タブで「Audit Trail」機能がアクティブになっている場合のみ、このウィンドウにデータが含まれています。</td>
</tr>
</tbody>
</table>

注：未解析サンプルについては、「Annotation」、「Raw」、および「EPT」タブのみに情報が含まれています。

7つのタブがあるビューの例は、2-8ページの表2-2「サンプルビュー」を参照してください。
表2-2 サンプルビュー

<table>
<thead>
<tr>
<th>サンプルビューのタブ</th>
<th>データ例</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annotation</td>
<td>Sequence</td>
</tr>
</tbody>
</table>

**Annotation**
- **Sample name**: sample1
- **Identiﬁcation**: 3736
- **Number of Reads**: 16760
- **Length of Reads**: 50
- **Start Run**: 7/28/2012, 14:44:45.45
- **Stop Run**: 7/28/2012, 16:29:38.45
- **Collection Started**: 1/20/1990, 3:55:06.45
- **Collection Stopped**: 12/31/1969, 17:43:06.45
- **Lot number**: 124897
- **Expiration date**: 2002-09-20 00:00:00.00
- **Capillaries**: 7
- **Tube Position**: E1
- **Instrument name**: SOLID 4000v3.01
- **Race in H1**: 3
- **Channels Rev.**: 1
- **Reads file name**: 10.5
- **Collection version**: 1.046.3

**Data Analysis**
- **Basecaller**: KN.bcp
- **Basecaller Version**: KN 1.5.6.5
- **Dyseq/Packet**: KN_3736_REV0.wav
- **Base Called**: 1226
- **Base Call Start**: 1592
- **Base Call End**: 16740
- **Peak 1 Location**: 1685
- **Arrow Signal Intensity**: G (122), A (164), T (1599), C (553)
- **Error**: G (19), A (27), T (28), C (17)
- **Signal/Bytes**: G (54), A (162), T (174), C (55)
- **Analyze Protocol**: Illumina
- **Analyze Protocol Version**: 1
- **Read Spacing Used**: 13.99
- **Read Spacing Calculated**: 13.99

**Sequence**

Show/Hide QV ボタンを使用して QV を表示/非表示します。
表2-2 サンプルビュー（続き）

<table>
<thead>
<tr>
<th>サンプルビューのタブ</th>
<th>データ例</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Feature</strong></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Sequence</th>
<th>Feature</th>
<th>Electropherogram</th>
<th>Raw</th>
<th>EPT</th>
<th>Audit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq_001_H01_1026343804062</td>
<td>Feature_Hay</td>
<td>Range</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*ABI_Limits 27 905 This is the confidence range

<table>
<thead>
<tr>
<th><strong>Electropherogram</strong></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Sequence</th>
<th>Feature</th>
<th>Electropherogram</th>
<th>Raw</th>
<th>EPT</th>
<th>Audit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq_001_H01_1026343804062</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

「Show/Hide QV」ボタンを使用してQVを表示/非表示にします。

<table>
<thead>
<tr>
<th><strong>Raw</strong></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Sequence</th>
<th>Feature</th>
<th>Electropherogram</th>
<th>Raw</th>
<th>EPT</th>
<th>Audit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq_001_H01_1026343804062</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表2-2 サンプルビュー（続き）

<table>
<thead>
<tr>
<th>サンプルビューのタブ</th>
<th>データ例</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPT</td>
<td><img src="EPT-Audit.png" alt="Electropherogram" /></td>
</tr>
<tr>
<td>Audit</td>
<td><img src="EPT-Audit.png" alt="Electropherogram" /></td>
</tr>
</tbody>
</table>

サンプルの詳細については、3-4ページの「サンプルファイルについて」を参照してください。

複数サンプルの表示

サンプルビューのタブを使用すると、複数のサンプルを同時に表示できます。「Electropherogram」ビューの複数サンプルの例を次に示します。
アナルシス レポート

Sample Manager 内にサンプルファイルがあるときは常に、Analysis Report を作成して、Sample Manager 内のサンプルのステータスを表示できます。

レポートを表示するには、をクリックします。

Analysis Report を次に示します。ここには、データ解析の成功および失敗（またはそのいずれか）が表示されます。アナルシスレポートは複数の部分から成り立っています。

- **Summary** – レポート内の全サンプルの要約が含まれています。
- **Length of Read (LOR)** – 各サンプルの LOR（読み取りの長さ）が含まれています。
- **Sample Details** – 各サンプル、ベース コーディング ステータスおよびそれに関連した Quality Value、およびサンプル スコアのリストが含まれています。「BC Status」カラムに黄の三角形または赤の停止記号が表示されている場合、解析の一部が失敗しています。黄と赤のアイコンは、エラー テーブル内の特定のエラー メッセージにリンクされています。また、サンプルファイル名は Sample Manager にリンクされています。
- **Errors** – サンプルファイルの解析中に発生したエラーがリストされます。

詳細については、第 7 章「アナルシス レポート」を参照してください。
操作の概要

解析の概要
解析、ポストプロセッシング、印刷はすべて、Sample Managerで行われます。サンプルファイルを解析して閲覧する手順は、次のとおりです。

1. Sample Managerにサンプルを追加します。
2. サンプルデータを表示します。
3. Analysis Protocolを修正します（オプション）。
4. データを解析します。
5. 結果の閲覧と編集を行ない、アナリシスレポートを生成します。
6. サンプルファイルを保存します。

ソフトウェアの起動
Sequencing Analysis 5.1のデスクトップショートカット）をダブルクリックします。

Sample Managerへのサンプルの追加
Add Samples機能を使用すると、Sample Managerにサンプルを追加して、データの解析、印刷、表示、編集、またはアナリシスレポートが生成できます。

Sample Managerにサンプルを追加するには
1.  （Add Sample(s)）をクリックするか、「File」>「Add Samples」を選択します。
2. サンプルの場所に移動します。
3. ダイアログボックスの「Samples To Add」ペインに追加するファイルを選択します。

<table>
<thead>
<tr>
<th>追加する対象</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>単一ファイルをリストに追加</td>
<td>ファイルを選択し、「Add Selected Samples」をクリックします。</td>
</tr>
<tr>
<td>連続した複数のファイル</td>
<td>[Shift]キーを使用してサンプルを選択し、「Add Selected Samples」をクリックします。</td>
</tr>
<tr>
<td>不連続の複数のファイル</td>
<td>[Ctrl]キーを使用してサンプルを選択し、「Add Selected Samples」をクリックします。</td>
</tr>
<tr>
<td>単一フォルダ内のすべてのサンプル</td>
<td>フォルダを選択し、「Add Selected Samples」をクリックします。</td>
</tr>
</tbody>
</table>

a. 「Add Samples」ダイアログボックスで「OK」をクリックします。
   ダイアログボックスが閉じて、選択したファイルが「Sample Manager」ウィンドウに追加されます。
b. 「サンプルデータの表示」に進んでください。
サンプルデータの表示　データを表示するには
1. 「Show」チェックボックスを使用して、1つまたは複数のサンプルファイルのデータを表示します（詳細については3-12ページの「サンプルファイルデータの表示」を参照してください）。

![Sample Manager](image1)

図2-1 「Sample Manager」ビューにおけるサンプル

2. 「Sample Navigator」ビューにデータを表示するには、 をクリックするか、「View」＞「Sample Navigator」を選択してください。

![Sample Navigator](image2)

図2-2 「Sample Navigator」ビューにおけるサンプル
Analysis Protocol の
編集および適用

注：既存の Analysis Protocol 設定が正しい場合、このセクションを読む必要はありません。

サンプルごとの Analysis Protocol の編集

Analysis Protocol 機能を使用して、Sample Manager 内にある個々のサンプルの Analysis Protocol を変更できます。

単一サンプルのプロトコールを編集するには
1. Sample Manager で、サンプル列を選択します。
2. をクリックするか、「Analysis」 > 「Analysis Protocol」を選択します。
3. 必要に応じてプロトコールを編集します。
   「General」、「Basecalling」、「Mixed Bases」、「Clear Range」タブで変更を行います。
4. 「OK」をクリックします。

注：変更は、選択したサンプルのプロトコールのみに適用されます。

新規の Analysis Protocol の編集および適用

Analysis Protocol Manager 機能を使用して、サンプルの Analysis Protocol 設定およびマスタ プロトコールを変更できます。

新規の Analysis Protocol を編集して適用するには
1. Sample Manager でサンプルを選択します。
   • [Shift] キーを使用して、連続したサンプルを選択します。
   • [Ctrl] キーを使用して、不連続のサンプルを選択します。
2. 「Analysis」 > 「Analysis Protocol Manager」を選択します。
3. 「Analysis Protocol」カラムで、編集するプロトコールを選択します。
4. 「File」ボタンをクリックし、「Open」を選択するか、プロトコール名をダブルクリックします。
5. 必要に応じて、「General」、「Basecalling」、「Mixed Bases」、「Clear Range」タブで変更を行います。
   注：この手順の詳細については、8-11 ページの「Analysis Protocol の作成と編集」を参照してください。
6. 「OK」をクリックしてプロトコールを保存し、「Sequence Analysis Protocol Editor」ダイアログ ボックスを開じます。
   注：バージョン番号は I ずつ増えていきます。
7. 「Apply to Selected Samples」をクリックします。
8. 「Done」をクリックして、「Analysis Protocol Manager」ダイアログ ボックスを開じます。

注：選択したサンプルおよびマスタプロトコールに変更が適用されます。
データの解析
解析を開始するには

（Start Analysis）をクリックして、選択したベースコーリング、ポストプロセシング、および印刷を開始します。

ベースコーリング

BC パラメータ（ベースコーリング）が選択されている場合、選択された Basecaller は次の処理を実行します。

- KB Basecaller
  - ミックスベースオプションが選択されている場合、ミックスベースを読み取ります。
    - ミックスベースは、1つの塩基の位置に2つの塩基が含まれることを意味します。Basecaller は、A、C、G、T、または IUB コードを各塩基に割り当てます。
  - ミックスベースオプションが選択されていない場合、単一の塩基のみを読み取ります。
    - Basecaller は、A、C、G、または T を各塩基に割り当てます。
  - ミックスベースオプションが選択されている場合、単一の塩基とミックスベースの Quality Value （QV）を計算します。
  - Quality Threshold が満たされていない場合、N を読み取ります（選択されている場合）。
  - True Profile または Flat Profile でデータを処理します。

- ABI Basecaller
  - Basecaller は、A、C、G、T、または N を各塩基に割り当てます（ミックスベース読み取りまたは QV オプションが選択されていない場合）。

ポストプロセシング

PP パラメータ（ポストプロセシング）が選択されている場合、Clear Range が計算されます。

Clear Range は、5' と 3' の両末端でクオリティの低いままたはエラーが発生しやすいシークエンスを除した後に残るシークエンスの領域です。KB Basecaller が解析に使用された場合、Clear Range は QV から計算されます。ABI Basecaller が使用された場合、範囲はデータ内の N から計算されるか、データの Start Point と Stop Point で塩基数だけ切り捨てられます（またはその両方が行われます）。

印刷

P パラメータ（印刷）が選択されている場合、解析およびポストプロセシングの後、サンプルビューが自動的に印刷されます。

注：印刷されるビューは、「Options」ダイアログボックスで定義されています。デフォルトを変更するには、「Tools」>「Options」を選択し、「Printing」タブをクリックしてください。
結果全体の閲覧とアナリシス レポートの生成

結果全体を閲覧するには

1. Sample Manager で結果を閲覧します。
   a. BC パラメータで緑、黄、または赤のボックスを探す。緑は処理が成功したこと、黄はデータの品質が低いこと、赤は失敗を示しています。

注：黄色で示された結果は、KB Basecaller で解析されたサンプルに適用されます。

b. PP および P パラメータ（またはそのいずれか）で緑または赤のボックスを探します。緑は処理が成功したこと、赤は失敗を示しています。

c. Spacing、Peak 1 Location、Start Point、Stop Point を閲覧します。「Base Spacing」カラムに赤の値が表示されている場合は、Spacing が計算できず、デフォルト値が解析に使用されています。

2. アナリシス レポートを閲覧します。
   a. (Analysis Report) をクリックして、アナリシス レポートを生成し、表示します。
   b. レポートのデータを閲覧します。

レポートをエクスポートするには、「File」 > 「Export Report」を選択します。ファイルがタブ区切りの形式でエクスポートされます。

サンプルの閲覧と塩基の編集

サンプルを閲覧して塩基を編集するには

1. サンプル ファイルを選択します。

2. サンプル ファイルで結果を閲覧します。
   a. Raw Data、解析データ、および EPT データを閲覧します。
   b. クオリティの低いベースコーリング（KB Basecaller で解析されたサンプル）を閲覧して、エラーがないかチェックします。

3. 必要に応じて塩基を編集します。

塩基を編集する際、変更に応じて QV が次のように変化します。

- 塩基を挿入した場合 – QV は追加されません。
- 塩基を削除した場合 – QV は削除されます。
- 塩基を変更した場合 – QV の数値は同じですが、灰色のバーで表示されます。

4. サンプル ファイルを保存します（サンプル ファイルは、再解析または編集の後、自動的には保存されません）。

   - 選択したサンプルを保存するには、「[ ]」をクリックするか、「File」 > 「Save Sample(s)」をクリックします。
   - すべてのサンプルを保存するには、「[ ]」をクリックするか、「File」 > 「Save All Sample(s)」を選択します。

注：サンプル ファイルの解析時に .seq ファイルが作成されている場合、サンプル ファイルを保存すると、サンプル ファイルと .seq ファイルの両方が更新されます。
Sample Manager のサンプル ファイル

この章では、次の項目について説明します。

Sequencing Analysis ソフトウェアの起動 .......................... 3-2
サンプルファイルについて ............................................. 3-4
サンプルファイルの Analysis Defaults の作成 ..................... 3-5
Sample Manager へのサンプルファイルの追加 ..................... 3-9
Sample Manager からのサンプルの削除 ............................ 3-11
サンプルウィンドウのビュー ........................................... 3-13
「Annotation」ビュー .................................................. 3-14
「Sequence」ビュー .................................................... 3-16
「Feature」ビュー ..................................................... 3-18
「Electropherogram」ビュー .......................................... 3-19
「Raw」ビュー ......................................................... 3-22
「EPT」ビュー .......................................................... 3-24
「Audit」ビュー ......................................................... 3-26
Sequencing Analysis ソフトウェアの起動

Sequencing Analysis ソフトウェアを開く

1. Sequencing Analysis 5.1 のデスクトップ ショートカットをダブルクリックするか、「Start」 > 「Programs」 > 「Applied Biosystems」 > 「Sequencing Analysis 5.1」を選択します。プログラムが読み込まれている間、スプラッシュ画面と「Log In」ダイアログ ボックスが開きます。

2. 「Log In」ダイアログ ボックスに入力します。
a. 必要に応じて、新規ユーザ名を入力します。
b. パスワードを入力します。
c. 「OK」をクリックします。

ダイアログ ボックスに入力し、プログラムの読み込みが完了すると、Sequencing Analysis ソフトウェアのメインウィンドウが開きます。

Sequencing Analysis ソフトウェアが開かない場合

ソフトウェアが正しくシャット ダウンされていたなかった場合、DataStore 情報にアクセスできないことがあります。その場合、Sequencing Analysis ソフトウェアのメインウィンドウの代わりに次のダイアログ ボックスが開きます。
ロックファイルを削除するには、次的方法を試してください。

- 「Delete existing lockfile」ボタンをクリックする。
- 「Try again to access Datastore」ボタンをクリックする。
- 次のパスを使用してlockfileを探し、削除する。

ドライプ名：\AppliedBiosystems\SeqA5.1\data\DataStore\master\lock

ロックファイルが削除されると、Sequencing Analysis ソフトウェアのメインウィンドウが開きます。
サンプルファイルについて

Sequencing Analysis v5.1 のサンプルファイルには、DNA シーケンスに関する次の情報が含まれています。

- 装置によって取り込まれた Raw Data（データコレクション後のデータプロセッシングを行う前の状態）
- Quality Value やミックスベースなどの Analysis Settings
- Clear Range などのポストプロセッシング設定
- Basecaller プログラムによって最初に読み取られたシーケンス
- ファイルに保存されている編集されたシーケンス
- 装置ランおよび解析条件を記述するアノテーション情報
- 各蛍光シグナルの強度を視覚的に記述する処理（解析）済みエレクトロフォレログラム
- ラン中のエレクトロフォレログラム条件（電圧、温度、電流、電力）の要約
- 最終結果シーケンスを修正するすべての操作のオーディットトレール（アクティブにされている場合）

これらの情報はすべて、画像形式およびテキスト形式で表示できます。このように、サンプルファイルには、ターゲットの DNA シーケンスに加えて、データおよび処理パラメータを解釈するために必要な解析に関する履歴情報がすべて含まれています。
サンプルファイルのAnalysis Defaultsの作成

Analysis Defaults
サンプルファイルはSample Managerに追加されると、次にAnalysis Defaultsを通過します。サンプルファイルには、処理パラメータの設定（ベースコーリング、ポストプロセッシング、印刷）、シーケンスファイル形式の設定（.seq、.scf、.phd.1）、およびAnalysis Protocolが含まれています。含まれていない場合のみ、Analysis Protocolはサンプルに割り当てられます。

Analysis Defaults
Analysis Defaultsは、ソフトウェアのインストールに含まれています。Analysis Protocolは「None」に設定されています。

Analysis Protocol
関連したAnalysis Protocolが含まれていないサンプルファイルがSample Managerに追加され、「Analysis Defaults」でAnalysis Protocolが選択されていない場合、次の警告ボックスが開きます。

Analysis Protocolを含むサンプルファイル
Analysis Protocolには、データのベースコーリングおよびポストプロセッシングに必要な設定がすべて含まれています。Analysis Protocolは、Sequencing Analysisソフトウェアの前バージョンで使用された優先設定をすべて置換します。プロトコルは、ファイルに適用されて保存されると、サンプルファイル内に保存されます。

Analysis Protocolを含むサンプルファイル
次の装置で作成されたサンプルファイルには、Analysis Protocolが含まれています。

- バージョン1.0または2.0Data Collectionソフトウェアを実行するApplied Biosystems3730/3730xlDNAAnalyzer
- ABI PRISM®3100/3100- バージョン2.0Data Collectionソフトウェアを実行するAvantジェネティックアナライザ
サンプルファイル

Analysis Protocol を含まないサンプルファイル

次の装置で作成されたサンプルファイルには、Analysis Protocol が含まれていません。

- ABI PRISM® 3700 DNA Analyzer
- バージョン 1.1（以前）の Data Collection ソフトウェアを実行する ABI PRISM® 3100 ジェネティック アナライザ
- バージョン 1.0 Data Collection ソフトウェアを実行する ABI PRISM® 3100-Avant ジェネティック アナライザ
- ABI PRISM® 377 DNA Sequencer
- ABI PRISM® 310 ジェネティック アナライザ

Analysis Defaults の適用方法

サンプルファイルが Sample Manager に追加されると、Analysis Protocol が適用されます。Data Collection ソフトウェアのサンプルシートで定義された DyeSet/Primer ファイルとマトリックスファイルが使用され、Analysis Protocol (Basecaller を含む) および Analysis Defaults の他の設定がすべてサンプルに適用されます。3-7 ページの図 3-1 を参照してください。

重要！DyeSet/Primer ファイルは、Data Collection ソフトウェアと Analysis Protocol の両方で使用しているケミストリーおよび Basecaller タイプと一致する必要があります。

作成する Analysis Protocol では、Data Collection ソフトウェアのサンプルシートで使用されているのと同じ Basecaller および関連するファイルを使用する必要があります。サンプルシート内で、選択した DyeSet/Primer ファイルが ABI Basecaller に関連付けられており、Analysis Protocol では選択した Basecaller が KB Basecaller である場合、解析は失敗します。これらのサンプルファイルを修正するには、Sample Manager のドロップダウンリストから正しい Basecaller と DyeSet/Primer ファイルを選択し、ファイルを再解析してください。
図 3-1 Sequencing Analysis ソフトウェアにおけるサンプルファイルへの Analysis Defaults の適用方法
Analysis Defaults の設定

Analysis Protocol および Analysis Defaults の作成方法の詳細については、第 8 章『Analysis Protocol、オプション、および Analysis Defaults』を参照してください。

重要！Analysis Protocol を作成または編集する場合、付録 C「Basecallers と DyeSet/Primer ファイル」を使用して、解析を成功させるために Basecaller と DyeSet/Primer の正しい組み合わせを選択してください。

Analysis Defaults を設定するには

1. 「Analysis」>「Analysis Defaults」を選択します。

2. 「Add Samples Settings」セクションで、次の操作を行います。
   a. 「Analysis Protocol」ドロップダウンリストで、次のいずれかを行います。
      - Basecaller、DyeSet/Primer ファイル、マトリックスファイル、および他の設定がラン条件に対して正しい場合、デフォルトの Master Analysis Protocol の 1 つを選択します。8-4 ページの「デフォルトの Master Analysis Protocol の設定」を参照してください。

      - 新規の Analysis Protocol を作成するか、既存の Analysis Protocol を編集します。

注：Analysis Protocol を作成または編集するには、「Analysis Protocol」ドロップダウンリストを使用して「New」または「Edit」を選択し、8-3 ページを参照して設定を定義してください。

b. 「Basecalling (BC)」、「Post Processing (PP)」、および「Print (P)」オプションを必要に応じて選択します。

3. 「Sequence File Formats」セクションで、「Analysis Protocol」の現在の設定を使用するか、無効にするように選択します。

4. 「OK」をクリックします。
Sample Manager へのサンプルファイルの追加

ファイルタイプ .ab1 のサンプルファイルを「Sample Manager」ウィンドウに追加するには、次のいずれかの方法で行います。

- Sample Manager に追加する各ファイルのアイコンをダブルクリックします。
- Sample Manager がアクティブになっている状態で、「Add Samples」ボタンをクリックするか、「File」>「Add Sample(s)」を選択します。
- 選択したファイルをショートカットアイコンまでドラッグします。
- Sample Manager に追加する各ファイルのアイコンを選択します。右クリックし、「Open with SeqA5App」を選択します。

ファイルがリストに追加された順に表示されます。

注：Sample Manager にサンプルを追加している間に「Missing Analysis Defaults」警告ボックスが表示された場合、3-5 ページの「サンプルファイルの Analysis Defaults の作成」を参照して、サンプルに Analysis Defaults を追加してください。

ファイルアイコンのダブルクリックによるファイルの追加

Sample Manager にサンプルファイルを追加するには

1. Sample Manager に追加するファイルのアイコンをダブルクリックします。
   注：Sequencing Analysis がまだ開いていない場合、ファイルをダブルクリックするとソフトウェアも開きます。

2. 手順 1 を繰り返して、他のサンプルファイルを追加します。

「Open with」コマンドを使用したサンプルファイルの追加

「Open with」コマンドを使用して複数のファイルを追加するには

1. Sample Manager に追加するサンプルファイルを選択します。
   注：サンプル数は 15 までにしてください。

2. 右クリックし、「Open with SeqA5App」を選択します。
   ファイルが Sample Manager に追加されます。

プログラムアイコンへのドラッグによるサンプルファイルの追加

サンプルをプログラムアイコン上にドラッグするには

1. Sample Manager に追加するサンプルファイルを選択します。

2. サンプルファイルを Seq 5.1.exe またはショートカットアイコン上にドラッグします。
   ファイルが Sample Manager に追加されます。
第3章 Sample Manager のサンプルファイル

Sequencing Analysis ウィンドウ内からサンプルファイルを追加するには

1. をクリックするか、「File」 > 「Add Samples」を選択します。

2. 「Add Samples」ダイアログボックスで、「Sample Manager」ウィンドウに追加するファイルを含むフォルダを探して開きます。

3. ダイアログボックスの「Samples To Add」ペインに、Sample Manager で必要なファイルを追加します。

<table>
<thead>
<tr>
<th>追加する対象</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>単一ファイルをリストに追加</td>
<td>ファイルを選択し、「Add Selected Samples」をクリックします。</td>
</tr>
</tbody>
</table>
| ファイルの一部またはすべてをリストに追加 | • ファイルを個々に追加します。または  
  • [Ctrl] キーを使用して不連続のサンプルを選択し、「Add Selected Samples」をクリックします。 |
| サンプルファイルを含むフォルダ | フォルダを選択し、「Add Selected Samples」をクリックします。  
注：サブフォルダ内にあるサンプルファイルは Sample Manager に追加されません。 |

4. 「Add Samples」ダイアログボックスで「OK」をクリックします。
   ダイアログボックスが閉じて、選択したファイルが「Sample Manager」ウィンドウに追加されます。
Sample Manager からのサンプルの削除

サンプルのデータプロセッシングの必要がない場合、そのサンプルは、プログラムによってデータプロセッシングでないかぎり、いつでも「Sample Manager」ウィンドウから削除できます。ただし、ファイルがデータプロセッシングされるのを防ぐためにリストからファイルを削除する必要はありません。Sequencing Analysis ソフトウェアでは、「BC (Basecalling)」、「PP (Post Processing)」、および「P (Printing)」パラメータ チェック ボックスにおける現在の情報に基づいて、ファイルを処理するかしないかが決定されます。データプロセッシング オプションのチェック ボックスが空の場合、サンプルのデータプロセッシングは省略されます。

サンプルの削除 「Sample Manager」ウィンドウから単一サンプルを削除するには
1. サンプルを選択します。
2. 次のいずれかを行います。
   • をクリックするか、「File」 > 「Remove Samples」を選択します。
   • [Delete] キーを使用します。

複数サンプルの削除

<table>
<thead>
<tr>
<th>削除対象</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>すべてのサンプル</td>
<td>「File」 &gt; 「Remove All Samples」を選択します。</td>
</tr>
</tbody>
</table>
| 隣り合っていない複数のサンプル | 1. [Ctrl] キーを押しながら、削除する各ファイルの番号をクリックします。  
                          | 2. をクリックするか、「File」 > 「Remove Samples」を選択します。 |
| 隣り合っている複数のファイル | 1. 削除対象である一番上のファイルの番号をクリックした後、[Shift] キーを押しながら、削除対象である一番下のファイルの列番号をクリックします。またはサンプル番号カラムをマウスでドラッグして選択します。  
                          | 2. をクリックするか、「File」 > 「Remove Samples」を選択します。 |
サンプルファイルデータの表示

Sample Managerに追加されたサンプルファイルは、「Sample View」ペインに自動的には表示されません。1つ以上のサンプルファイルのデータを表示するには、次の表を参照してください。

<table>
<thead>
<tr>
<th>表示対象のデータ</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>単一サンプル</td>
<td>サンプルファイル名をダブルクリックするか、対応する「Show」チェックボックスを選択します。</td>
</tr>
<tr>
<td>連続した複数のサンプル</td>
<td>[Shift]キーを押しながらサンプル列番号をクリックまたはドラッグしてサンプルファイルを選択した後、「View」「Show Data Displays」をクリックするか、選択したサンプルファイルのみがチェックされます。</td>
</tr>
<tr>
<td>不連続の複数のサンプル</td>
<td>[Ctrl]キーを押しながらサンプル列番号をクリックしてサンプルファイルを選択した後、「View」「Show Data Displays」を選択します。</td>
</tr>
<tr>
<td>すべてのサンプル</td>
<td>列番号1の上にある空のボックスを選択するか、[Shift]キーを押しながらサンプル列番号をドラッグしてすべてのサンプルを選択した後、「View」「Show Data Displays」をクリックするか、「View」「Show Data Displays」を選択します。</td>
</tr>
</tbody>
</table>

注：サンプルファイル名をダブルクリックすると、チェックされているサンプルの「Show」チェックボックスが（あれば）すべて選択解除され、選択したサンプルファイルのみがチェックされます。
サンプル ウィンドウのビュー

サンプル ウィンドウについて
サンプル ウィンドウの主要部分には、シーケンスに関する情報が含まれています。このウィンドウを使用して、シーケンス データを表示または編集します。

「Sample Manager」または「Navigator」ペインでは、次の7つのビューを表示できます。

- Annotation
- Sequence
- Feature
- Electropherogram
- Raw (Data)
- EPT
- Audit

ビューを変更するには、表示するビューのタブを選択してください。

サンプル ウィンドウビューの要約
次の表に、各ビューの説明を示します。各ビューの詳細については、次のセクションを参照してください。

表3-1 サンプル ウィンドウの部分

<table>
<thead>
<tr>
<th>ビュー</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annotation</td>
<td>データ収集および解析ソフトウェアによって書き出されたサンプル情報の要約（3-14ページを参照）。</td>
</tr>
<tr>
<td>Sequence</td>
<td>データに対するヌクレオチド（塩基）シーケンス テキスト。灰色のシーケンス テキストは、削除された塩基を表しています。このビューは、ベース コーリングが行われた後にのみ表示できます（3-16ページを参照）。</td>
</tr>
<tr>
<td>Feature</td>
<td>ポスト プロセッシング（Clear Range）によって検出されたシーケンス（3-18ページを参照）。</td>
</tr>
<tr>
<td>Electropherogram</td>
<td>解析済みデータの 4 色ビクチャ。ピークは塩基を表しています。オリジナルの塩基、編集済み塩基、または相補的な塩基を表示できます。 これにより、サンプル ファイルの表示時に表示されるデフォルトビューで、ベース コーリングが行われた後にのみ表示できます（3-19ページを参照）。</td>
</tr>
<tr>
<td>Raw</td>
<td>装置によって検出された Raw Data（3-22ページを参照）。</td>
</tr>
<tr>
<td>EPT</td>
<td>泳動時の電圧、電流、電力、および温度値のプロット（3-24ページを参照）。</td>
</tr>
<tr>
<td>Audit</td>
<td>データの修正に関する情報（塩基の変更、削除、挿入、解析設定の変更、サンプル名の変更）。 「Options」ダイアログ ボックスの「Authentication and Audit」タブで「Audit Trail」機能がアクティブになっている場合のみ、このウィンドウにデータが含まれています（3-26ページを参照）。</td>
</tr>
</tbody>
</table>
第3章 Sample Manager のサンプルファイル

「Annotation」ビュー

「Annotation」ビューには、次のデータが表示されます。

- **Data Collection** ソフトウェアで入力したサンプル情報
- **Data Collection** ソフトウェアと **Analysis** ソフトウェアで入力した追加情報（開始時刻、停止時刻など）

表示 「Annotation」ビューを表示するには、Sample Manager でサンプルを選択して表示した後、「Annotation」タブを選択します。
ウィンドウ内の情報は表示できますが、編集はできません。

<table>
<thead>
<tr>
<th>Annotation</th>
<th>Sequence</th>
<th>Features</th>
<th>Electropherogram</th>
<th>Raw</th>
<th>EPT</th>
<th>Audit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seq_007_E01_102649880187</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Data Collection**
- **Sample name:** sample1
- **Model:** 3730
- **Number of Frames:** 167840
- **Length to Detector:** 50
- **Start Time:** 10/10/2002, 14:40:43
- **Stop Time:** 10/10/2002, 14:43:00:43
- **Collection Started:** 1/10/1995, 3:55:36:45
- **Collection Stopped:** 1/10/1995, 7:13:46:0
- **Lot number:** 12208907
- **Expiration date:** 2002-09-28 00:00:00:0
- **Capillaries:** 9
- **Tube Positions:** E1
- **Instrument name:** M011010002-001
- **Data in Hz:** 3
- **Channel Area:** 1
- **Module file name:** 168
- **Collection version:** 1.0.0.5

**Data Analysis**
- **Basecaller:** MR.arp
- **Basecaller Version:** M0.1.0.0.5
- **Pyserc/Parse:** M0_0700_P207_GDV0.0.bch
- **Base Detected:** 1216
- **Base Call Start:** 1462
- **Base Call End:** 149040
- **Peak 1 Location:** 1085
- **Area Signal Intensity:** G (827), A (163), C (1099), T (633)
- **Baseline:** G (49), A (27), T (26), C (27)
- **Signal/Noise:** G (64), A (62), C (74), T (58)
- **Analysis Protocol:** Interanalys
- **Analysis Protocol Version:** 1
- **Base Spacing Used:** 15.89
- **Base Spacing Calculated:** 15.89

![図 3-2 「Annotation」ビューのサンプル](image)

3-14 Applied Biosystems DNA Sequencing Analysis ソフトウェア v5.1 ユーザーガイド
### Data Collection

<table>
<thead>
<tr>
<th>フィールド</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample name</td>
<td>Data Collection ソフトウェアの「Plate Record」の「Sample Name」カラムに入力された名前</td>
</tr>
<tr>
<td>Model</td>
<td>サンプルの取り込みに使用された装置モデル</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>データの解析に使用されたデータポイントの範囲</td>
</tr>
<tr>
<td>Start and Stop Run</td>
<td>習慣開始、終了した日付と時刻</td>
</tr>
<tr>
<td>Collection Started and Stopped</td>
<td>データ収集が開始、終了した日付と時刻</td>
</tr>
<tr>
<td>Lot number</td>
<td>ルーターに使用されたボリマーのロット番号</td>
</tr>
<tr>
<td>Expiration date</td>
<td>ルーターに使用されたボリマーの使用期限</td>
</tr>
<tr>
<td>Capillary</td>
<td>サンプルのエレクトロフェログラムに使用されたキャビリリ番号</td>
</tr>
<tr>
<td>Tube position</td>
<td>サンプルのウェル位置</td>
</tr>
<tr>
<td>Instrument name</td>
<td>装置の名前</td>
</tr>
<tr>
<td>Rate in Hz</td>
<td>データサンプリングレート</td>
</tr>
<tr>
<td>Module file name</td>
<td>サンプルのランに使用されたモジュールファイルの名前</td>
</tr>
<tr>
<td>Collection version</td>
<td>データの取り込みに使用されたソフトウェアのバージョン</td>
</tr>
</tbody>
</table>

### Data Analysis

<table>
<thead>
<tr>
<th>フィールド</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basecaller</td>
<td>データの解析に使用された Basecaller の名前</td>
</tr>
<tr>
<td>Basecaller Version</td>
<td>データの解析に使用された Basecaller のバージョン</td>
</tr>
<tr>
<td>DyeSet/Primer file</td>
<td>解析中にモビリティシフトの調整に使用された DyeSet/Primer ファイル</td>
</tr>
<tr>
<td>Bases detected</td>
<td>サンプル内の塩基の合計数</td>
</tr>
<tr>
<td>Base call start and end</td>
<td>データ解析に使用された Raw Data の Start Point と Stop Point（スキャン番号）</td>
</tr>
<tr>
<td>Peak 1 Location</td>
<td>データ解析を開始する Raw Data ポイント（スキャン番号）</td>
</tr>
<tr>
<td>Ave Signal Intensity</td>
<td>サンプル内の「A」、「C」、「G」、または「T」塩基の標識に使用された各塩基の平均蛍光強度（シグナル）</td>
</tr>
<tr>
<td>Noise</td>
<td>各塩基の平均パックグラウンド蛍光強度</td>
</tr>
<tr>
<td>Signal/Noise</td>
<td>シグナル/ノイズ比</td>
</tr>
<tr>
<td></td>
<td>「A」、「C」、「G」、または「T」塩基のシグナル強度の平均を、その塩基のノイズの平均で除算した値</td>
</tr>
<tr>
<td>Matrix Name</td>
<td>マルチコンポーネント処理に使用されたマトリックスファイル、310および377データにのみ使用されます。</td>
</tr>
<tr>
<td>Analysis Protocol</td>
<td>データ解析で最後に使用された Analysis Protocol 。</td>
</tr>
<tr>
<td>Analysis Protocol Version</td>
<td>データ解析で最後に使用された Analysis Protocol のバージョン番号。</td>
</tr>
<tr>
<td>Spacing Used</td>
<td>Basecaller によって計算された塩基どうしのSpacing、またはユーザによって定義された塩基どうしのSpacing。</td>
</tr>
<tr>
<td>Spacing Calculated</td>
<td>Basecaller によって計算された塩基どうしのSpacing。</td>
</tr>
</tbody>
</table>

印刷 「Annotation」ビュー ウィンドウの内容を印刷するには、4-17 ページを参照してください。
「Sequence」ビュー

「Sequence」には、次のデータが表示されます。
- データから読み取られたヌクレオチド シーケンス。
- 幅の広い中央のカラムには、シーケンス データが含まれています。
- 左と右のカラムには、列の最初と最後の塩基の位置が表示されます。
- 灰色のテキストは、Clear Range 外のデータです。

表示
「Sequence」ビューを表示するには、Sample Manager でサンプルを選択して表示した後、 「Sequence」 タブを選択します。

注：データがベースコールされていない場合、「Sequence」ウィンドウは空になっています。
ウィンドウ内の情報は編集できます。塩基を編集した後、「Electropherogram」ビューに切り替えると、同じ塩基位置が表示されます。

図 3-3 「Sequence」ビュー内に表示される単一のサンプル

図 3-4 「Sequence」ビュー内に表示される複数のサンプル
### 検索、編集、表示、および印刷

<table>
<thead>
<tr>
<th>操作</th>
<th>参照先</th>
</tr>
</thead>
<tbody>
<tr>
<td>「Find」コマンド（[Ctrl] + [F]）と「Find Again」（[Ctrl] + [G]）を使用して、塩基文字、塩基の範囲、または指定塩基パターンを検索する</td>
<td>4-10 ページの「シーケンス内での パターンの検索」を参照してください。</td>
</tr>
<tr>
<td>標準的な Windows ベースのコンピュータ コマンドを使用してシーケンスを編集する</td>
<td>4-14 ページの「「Sequence」または「Electropherogram」ビューにおける 塩基の編集」を参照してください。</td>
</tr>
<tr>
<td>相補鎖を表示する</td>
<td>4-12 ページの「相補鎖データの表示」を参照してください。</td>
</tr>
<tr>
<td>Quality Value および番号を表示する</td>
<td>4-13 ページの「Quality Value の表示」を参照してください。</td>
</tr>
<tr>
<td>ウィンドウの内容を印刷する</td>
<td>4-17 ページの「サンプル ウィンドウ ビューの 印刷」を参照してください。</td>
</tr>
</tbody>
</table>
「Feature」ビュー

「Feature」ビューには、ポストプロセッシングによって analyzed sequence data に追加された機能が表示されます。

表示 「Feature」ビューを表示するには、Sample Manager でサンプルを選択して表示した後、「Feature」タブを選択します。

注： シーケンスデータがポストプロセッシングされていない場合、「Feature」ウィンドウは空になっています。

ウィンドウ内の情報は表示できますが、編集はできません。

図 3-5 「Feature」ビュー内に表示される単一のサンプル

図 3-6 「Feature」ビュー内に表示される複数のサンプル

印刷 ウィンドウの内容を印刷するには、4-17 ページの「サンプルウィンドウビューの印刷」を参照してください。
「Electropherogram」ビュー

「Electropherogram」ビューは、解析されたサンプルデータの4色表示です。ピークは、サンプルに対して読み取られた塩基を表しています。このビューは、すべてのサンプルのデフォルトビューで、編集可能です。

表示 「Electropherogram」ビューを表示するには、Sample Managerでサンプルを選択して表示した後、「Electropherogram」タブを選択します。

注：Raw Dataが解析されていない場合、「Electropherogram」ウィンドウは空になっています。

図3-7 「Electropherogram」ビュー内に表示された単一のサンプル

図3-8 「Electropherogram」ビュー内に表示された複数のサンプル

注：サンプルのペインの高さを低くすると、より多くのサンプルを同時に表示できるようになります。詳細については、第9章「Display Settings」を参照してください。
波形の色と塩基の色

波形とピークの上にある文字は、4つの塩基を表すために色分けされています。次の表に、各塩基のデフォルト色を示します。

<table>
<thead>
<tr>
<th>塩基</th>
<th>色</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>青</td>
</tr>
<tr>
<td>A</td>
<td>緑</td>
</tr>
<tr>
<td>G</td>
<td>黒</td>
</tr>
<tr>
<td>T</td>
<td>赤</td>
</tr>
</tbody>
</table>

注：塩基を表す色は変更できます。詳細については、第9章「Display Settings」を参照してください。

ミックスベースと単一塩基

ミックスベースは、1つの塩基の位置に2つの塩基が含まれることを意味します。

KB Basecaller

- ミックスベースデータに対して「MixedBases」オプションが選択されている場合、KB Basecaller は、各塩基に A、C、G、T、または IUB コードを割り当てます。
- 「MixedBases」オプションが選択されていない場合（単一の塩基）、KB Basecaller は各塩基に A、C、G、または T を割り当てます。

注：Analysis Protocol で「Quality Threshold」オプションが「Assign 'N'」に設定されている場合、QV<X の塩基に対して、N が読み取られます。

ミックスベース設定を変更するには、8-11ページの「Analysis Protocol の作成と編集」を参照してください。

Quality Value

Quality Value（QV）は、Basecaller 精度の塩基当たりの推定値です。オプションで、QV は、サンプル内の各塩基の上にバーとして表示されます。バーの高さと色がその値を示します。バーが高いほど、高い QV を表しています。4-13ページの「Quality Value の表示」を参照してください。

Clear Range

Clear Range は、5’と3’の両端末でクオリティの低いまたはエラーが発生しやすいシーケンスを除外した後に残るシーケンスの領域です。「Electropherogram」ビューと「Sequence」ビューでは、除外されたデータは灰色で表示されます。

Clear Range 外の塩基を編集することはできません。範囲を変更するには、4-7ページの「Clear Range の変更」を参照してください。

編集された塩基の表示

編集された塩基は小文字で表示され、関連した QV バーは、新規塩基には適用されないため、灰色で表示されます。
### Electropherogram ビューで行うことができる操作

<table>
<thead>
<tr>
<th>操作</th>
<th>手順またはキー シーケンス</th>
</tr>
</thead>
<tbody>
<tr>
<td>ズーム インまたはズーム アウトして、データを異なる倍率で表示する</td>
<td>4-4 ページの「ビューのズーム」を参照してください。</td>
</tr>
<tr>
<td>塩基を編集する</td>
<td>4-14 ページの「Sequence」または「Electropherogram」ビューにおける塩基の編集」を参照してください。</td>
</tr>
<tr>
<td>「Find」コマンド ([Ctrl] + [F]) と「Find Again」 ([Ctrl] + [G]) を使用して、塩基の文字、塩基の範囲、または指定された塩基パターンを検索する</td>
<td>4-10 ページの「シーケンス内でのパターンの検索」を参照してください。</td>
</tr>
<tr>
<td>標準的な Windows ベースのコンピュータ コマンドを使用してシーケンスを編集する</td>
<td>4-14 ページの「Sequence」または「Electropherogram」ビューにおける塩基の編集」を参照してください。</td>
</tr>
<tr>
<td>相補鎖を表示する</td>
<td>4-12 ページの「相補鎖データの表示」を参照してください。</td>
</tr>
<tr>
<td>Quality Value および番号を表示する</td>
<td>4-13 ページの「Quality Value の表示」を参照してください。</td>
</tr>
<tr>
<td>塩基の編集中に、オリジナルの編集されていないシーケンスを表示する</td>
<td>4-11 ページの「オリジナルデータの表示」を参照してください。</td>
</tr>
<tr>
<td>現在のカーソル位置に+マークと座標を表示する</td>
<td>ウィンドウのデータ領域内でクリックします。</td>
</tr>
<tr>
<td>ウィンドウの内容を印刷する</td>
<td>4-17 ページの「サンプルウィンドウビューの印刷」を参照してください。</td>
</tr>
<tr>
<td>次の塩基に移動する</td>
<td>右矢印キー</td>
</tr>
<tr>
<td>前の塩基に移動する</td>
<td>左矢印キー</td>
</tr>
<tr>
<td>次に出てくる N を右方向に検索する</td>
<td>[Tab] キー</td>
</tr>
<tr>
<td>次に出てくる N を左方向に検索する</td>
<td>[Shift] + [Tab] キー</td>
</tr>
<tr>
<td>ポイントを 10 塩基右に移動する</td>
<td>[F5] キー</td>
</tr>
<tr>
<td>ポイントを 10 塩基左に移動する</td>
<td>[Shift] + [F5] キー</td>
</tr>
<tr>
<td>ポイントを右方向の次の低 QV に移動する</td>
<td>[F6] キー</td>
</tr>
<tr>
<td>ポイントを左方向の次の低 QV に移動する</td>
<td>[Shift] + [F6] キー</td>
</tr>
<tr>
<td>ポイントを右方向の中 QV に移動する</td>
<td>[F7] キー</td>
</tr>
<tr>
<td>ポイントを左方向の中 QV に移動する</td>
<td>[Shift] + [F7] キー</td>
</tr>
<tr>
<td>ポイントを右方向の次の高 QV に移動する</td>
<td>[F8] キー</td>
</tr>
<tr>
<td>ポイントを左方向の次の高 QV に移動する</td>
<td>[Shift] + [F8] キー</td>
</tr>
</tbody>
</table>
「Raw」ビュー

「Raw」ビューには、処理が実行される前の、サンプルの Raw Data が表示されます。

「Raw」ビューでは、次の作業を行えます。

- Sequencing Analysis ソフトウェアによってベース コーリングを開始および停止するために使用されるスキャン番号を確認する。
- Sequencing Analysis ソフトウェアによってスムージングが適用される前に、相対的な真のピーク強度を測定し、ピーク解像度を表示する。
- 低精度のベース コーリングの原因あるいは装置の不具合を示す、ベースラインに関する問題あるいはノイズ（データ中の電気的なスパイクあるいは異常なベースラインの高さ）を検出する。
- 2 つの隣接ピークを定義するスキャンポイントを測定することで、Spacing を推定する。

「Raw」ビューを表示するには、Sample Manager でサンプルを選択して表示した後、「Raw」タブを選択します。

![図 3-9 「Raw」ビュー内に表示される単一のサンプル](image1)

![図 3-10「Raw」ビュー内に表示される複数のサンプル](image2)
解析済みサンプルと未解析サンプルのRaw Data の表示

Data Collection ソフトウェアのアレイビュー内で Raw Data が表示される色は、塩基の標識に使用された蛻光色素を反映しています。ケミストリごとに、各塩基は異なる色で表示されます。

未解析データ

Sequencing Analysis ソフトウェアでは、未解析データの 4 色の波形が、4 つの蛻光色素の蛻光データを表しています。各色によって表される塩基は、ケミストリによって異なります。

次の表に、ケミストリと、4 つの塩基のそれぞれを表す色を示します。

<table>
<thead>
<tr>
<th>表 3-4 ケミストリごとの Raw Data の色表示</th>
</tr>
</thead>
<tbody>
<tr>
<td>色</td>
</tr>
<tr>
<td>青</td>
</tr>
<tr>
<td>緑</td>
</tr>
<tr>
<td>黄</td>
</tr>
<tr>
<td>赤</td>
</tr>
</tbody>
</table>

解析済みデータ

解析中に DyeSet/Primer ファイルがサンプルに適用された場合、塩基に対応する色は次のようにになります。

<table>
<thead>
<tr>
<th>塩基</th>
<th>色</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>青</td>
</tr>
<tr>
<td>A</td>
<td>緑</td>
</tr>
<tr>
<td>G</td>
<td>黒</td>
</tr>
<tr>
<td>T</td>
<td>赤</td>
</tr>
</tbody>
</table>

「Raw」ビュー内の強度値

Raw Data が最大倍率で表示された場合、スキャン番号ごとに 4 つの見かけのデータ ポイント（ピクセル）が表示されます。4 番目のデータ ポイントが、スキャン番号の真の強度値です。他の 3 つのピクセルは、真のデータ ポイント間の線をつなぐだけです。

「Raw」ビューでは、次の操作を行えます。

<table>
<thead>
<tr>
<th>操作</th>
<th>手順</th>
</tr>
</thead>
<tbody>
<tr>
<td>ズーム インまたはズーム アウトして、データを異なる倍率で表示する</td>
<td>4-4 ページの「ビューのズーム」を参照してください。</td>
</tr>
<tr>
<td>蛻光色素を表す波形の色を変更するか、1 つ以上の波形を非表示にする</td>
<td>9-9 ページの「Display Settings の 変更」を参照してください。</td>
</tr>
<tr>
<td>現在のカーソル位置に + マークと座標を表示する</td>
<td>ウィンドウのデータ領域内でクリックします。</td>
</tr>
<tr>
<td>ウィンドウの内容を印刷する</td>
<td>4-17 ページの「サンプルウィンドウビューの印刷」を参照してください。</td>
</tr>
</tbody>
</table>
「EPT」ビュー

「EPT」ビューは、電力変動または電力異常が発生した後、電力値、温度値、および電圧値を閲覧する際に役立ちます。

次の表に、「EPT」ビューで使用される単位とデフォルト色をまとめます。

<table>
<thead>
<tr>
<th>プロットされた測定値</th>
<th>デフォルト色</th>
<th>単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>電圧</td>
<td>青</td>
<td>V/100</td>
</tr>
<tr>
<td>電流</td>
<td>緑</td>
<td>μA</td>
</tr>
<tr>
<td>電力</td>
<td>黒</td>
<td>mW x 10</td>
</tr>
<tr>
<td>温度</td>
<td>赤</td>
<td>°C</td>
</tr>
</tbody>
</table>

表示

「EPT」ビューを表示するには、Sample Manager でサンプルを選択して表示した後、「EPT」タブを選択します。

図 3-11 «EPT」ビュー内に表示される単一のサンプル

図 3-12 «EPT」ビュー内に表示される複数のサンプル
表示と印刷

「EPT」ウィンドウの内容を表示して印刷するには、次の表を参照してください。

<table>
<thead>
<tr>
<th>操作</th>
<th>手順</th>
</tr>
</thead>
<tbody>
<tr>
<td>現在のカーソル位置に + マークとデータ値を表示する</td>
<td>ウィンドウのデータ領域内でクリックします。</td>
</tr>
<tr>
<td>ダイアログ ボックスを開いて、特定の線の色で表示される情報のタイプを調べる</td>
<td>「Analysis」&gt;「Display Settings」を選択します。</td>
</tr>
<tr>
<td>ウィンドウの内容を印刷する</td>
<td>4-17ページの「サンプル ウィンドウ ビューの印刷」を参照してください。</td>
</tr>
</tbody>
</table>
「Audit」ビュー

「Audit」ビューには、次のデータが表示されます。

- 操作（の変更）および変更の理由。操作は次のとおりです。
  - 塩基の変更、削除、または挿入
  - Analysis Settings にわたった変更
  - サンプル名にわたった変更
  - データの解析
- 変更を行ったユーザのユーザ ID と名前
- 変更が行われた日付

表示  「Audit」ビューを表示するには、Sample Manager でサンプルを選択して表示した後、「Audit」タブを選択します。

印刷  ウィンドウの内容を印刷するには、4-17 ページの「サンプルウィンドウビューの印刷」を参照してください。
サンプルの表示と編集

この章では、次の項目について説明します。

解析結果の閲覧 ................................. 4-2
ズーム コマンドの使用 ............................ 4-4
データ ポイントの値の決定 .......................... 4-6
塩基番号の表示 .................................... 4-7
Clear Range の変更 ................................. 4-7
パターンの検索 ...................................... 4-10
「Electropherogram」ビューにおけるオリジナルデータの表示 ......................... 4-11
データの相補鎖の表示 ............................... 4-12
解析されたデータの編集 ............................. 4-14
サンプル ファイルの保存 .......................... 4-15
サンプル ウィンドウ ビューの印刷................. 4-17
印刷されたエレクトロフェログラムの表示 ............... 4-21
解析結果の閲覧

サンプルのデータプロセッシングが終了したら、解析されたデータで作業を始める前に、結果を閲覧する必要があります。

### 「BC」、「PP」、および「P」チェック ボックスの閲覧

BC (ベース コーリング)、PP (ポスト プロセッシング)、および P (印刷) パラメータのチェック ボックスを閲覧するには

1. 「Sample Manager」ウィンドウで、「BC」、「PP」、および「P」チェック ボックスを閲覧します。
   a. BC パラメータで緑、黄、または赤のボックスを探します。緑はデータプロセッシングが成功したこと、黄はクオリティの低いデータ、赤は失敗を示しています。

注：黄色で示された結果は、KB Basecaller で解析されたサンプルに適用されます。

b. PP および P パラメータ（またはそのいずれか）で緑または赤のボックスを探します。緑は処理が成功したこと、赤は失敗を示しています。

c. Spacing、Peak 1 Location、Start Point、Stop Point を閲覧します。「Base Spacing」カラムに赤の値が表示されている場合は、Spacing が計算できず、デフォルト値が解析に使用されています。

2. 必要に応じてファイルを再解析します。

詳細については、第 5 章 「Sample Manager の使用」を参照してください。

### 解析データの閲覧

<table>
<thead>
<tr>
<th>手順</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacing 値を閲覧する</td>
<td>「Sample Manager」ウィンドウで Spacing を閲覧します。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>現象</th>
<th>状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>値が赤のテキストで表示されている</td>
<td>Basecaller が値の計算に失敗し、デフォルトの Spacing 値が使用されました。</td>
</tr>
</tbody>
</table>

データプロセッシングで使用されるパラメータ ファイルを閲覧する

データプロセッシングで使用するように指定されたパラメータ ファイルを閲覧します。

<table>
<thead>
<tr>
<th>現象</th>
<th>状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>ファイルの名前が黒、太字、斜体で表示されている</td>
<td>ソフトウェアは、予測された場所でファイルを検出できませんでした。</td>
</tr>
</tbody>
</table>

解析を開始するには、Sequencing Analysis ソフトウェアと同じフォルダ内に存在する Basecaller、および Mobility フォルダ内に存在する DyeSet/Primer ファイルを指定する必要があります。

<table>
<thead>
<tr>
<th>指定する対象</th>
<th>使用するパス</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basecaller</td>
<td>Drive:\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Params</td>
</tr>
<tr>
<td>DyeSet/Primer ファイル</td>
<td>Drive:\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Mobility</td>
</tr>
<tr>
<td>マトリックス ファイル</td>
<td>Drive:\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Matrix</td>
</tr>
</tbody>
</table>
表 4-1  解析済みデータを閲覧する手順 （続き）

<table>
<thead>
<tr>
<th>手順</th>
<th>說明</th>
</tr>
</thead>
<tbody>
<tr>
<td>エレクトロフェログラムで低、中、および高 QV を検索する（KB Basecaller で解析されたデータに対して）</td>
<td>QV の検索方法は次のとおりです。</td>
</tr>
<tr>
<td></td>
<td>操作</td>
</tr>
<tr>
<td></td>
<td>次の低 QV へ右に移動</td>
</tr>
<tr>
<td></td>
<td>次の低 QV へ左に移動</td>
</tr>
<tr>
<td></td>
<td>次の中 QV へ右に移動</td>
</tr>
<tr>
<td></td>
<td>次の中 QV へ左に移動</td>
</tr>
<tr>
<td></td>
<td>次の高 QV へ右に移動</td>
</tr>
<tr>
<td></td>
<td>次の高 QV へ左に移動</td>
</tr>
</tbody>
</table>

エレクトロフェログラムをスクロールする

「Electropherogram」ビュー内のデータの全長をスクロールします。別の位置に、ギャップやオーバーラップがなく、ノイズがほとんどないピークがないか探します。
ウィンドウの終端までスクロールし、分解能の高いピークを探します。

分解能の高いピーク 分解能の低いピーク

エレクトロフェログラムでベースコールをチェックする

「Electropherogram」ビュー内でベースコールを確認します。

<table>
<thead>
<tr>
<th>現象</th>
<th>状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 つのピークが接近しているか、ピークが低いか、またはバックグラウンドノイズレベルが高い</td>
<td>各ピークを、そのピークに対して読み取られた塩基と比較します。必要に応じて、誤ったベースコールを手動で編集します。</td>
</tr>
</tbody>
</table>

エレクトロフェログラムで N を検索する

N の検索方法は次のとおりです。

<table>
<thead>
<tr>
<th>操作</th>
<th>キー</th>
</tr>
</thead>
<tbody>
<tr>
<td>前方に移動する</td>
<td>[Tab] キー</td>
</tr>
<tr>
<td>後方に移動する</td>
<td>[Shift] + [Tab]</td>
</tr>
</tbody>
</table>

N 位置における正しいベースコールを視覚的に決定できる場合、N を正しい文字に手動で変更します。
### ズーム コマンドの使用

「View」メニューには6つのズーム コマンドがあり、どのグラフィック ビューでも、表示されるデータの量を変更できます。

#### ビューのズーム
ビューをズームするには、表示するデータ領域をクリックした後、次の表に示された手順に従ってください。

<table>
<thead>
<tr>
<th>ビュー コマンド</th>
<th>説明</th>
<th>手順</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full View</td>
<td>標準サイズのウィンドウ内にすべてのデータを表示します。</td>
<td>「View」 &gt; 「Full View」を選択します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ctrl] + [ ] を押します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>をクリックします。</td>
</tr>
<tr>
<td>Actual Size</td>
<td>表示を初期 / デフォルトのズーム倍率に戻します。初期ズーム倍率は、Display Settings によって決まります。</td>
<td>「View」 &gt; 「Actual Size」を選択します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ctrl] + [ ] を押します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>をクリックします。</td>
</tr>
<tr>
<td>Zoom In Horizontal</td>
<td>ビューを水平方向に拡大し、より詳細に表示します。</td>
<td>「View」 &gt; 「Zoom In Horizontal」を選択します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ctrl] + [ ] を押します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>をクリックします。</td>
</tr>
<tr>
<td>Zoom Out Horizontal</td>
<td>ビューを水平方向に縮小し、より広い領域を表示します。</td>
<td>「View」 &gt; 「Zoom Out Horizontal」を選択します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ctrl] + [ ] を押します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>をクリックします。</td>
</tr>
<tr>
<td>Zoom In Vertical</td>
<td>ビューを垂直方向に拡大し、より詳細に表示します。</td>
<td>「View」 &gt; 「Zoom In Vertical」を選択します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ctrl] + [Shift] + [ ] を押します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>をクリックします。</td>
</tr>
<tr>
<td>Zoom Out Vertical</td>
<td>ビューを垂直方向に縮小し、より広い領域を表示します。</td>
<td>「View」 &gt; 「Zoom Out Vertical」を選択します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Ctrl] + [Shift] + [ ] を押します。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>をクリックします。</td>
</tr>
</tbody>
</table>
ズーム コマンドの例

次に示す水平ズーム コマンドの例では、「Electropherogram」ビューを使用しています。このコマンドは、「Raw」ビューと「EPT」ビューでも機能します。

他のサイズからデフォルトビューに戻るには、「Actual Size」を選択します。
データ ポイントの値の決定

特定のデータ ポイントの値を使用して、「Peak 1 Location」、「Start Point」、および「Stop Point」を設定できます。マーカ機能を使用して、サンプルウィンドウの「Electropherogram」、「Raw」、または「EPT」ビュー内の任意のポイントにおける正確な値を決定することができます。

データ ポイントの値を決定するには

1. 対象のポイントの近くをクリックします。
   カーソルが、十字型のロケータ線付きで表示されます。

2. ロケータ線が対象の点と交差するまで、ウィンドウ内でカーソルをドラッグします。
塩基番号の表示

塩基番号を表示するには

1. 「Electropherogram」タブを選択します。
2. 対象の塩基上にカーソルを置きます。

塩基番号が表示されます。塩基間でカーソルをドラッグすると、各塩基の塩基番号が表示されます。

Clear Range の変更

Clear Range は、5' と 3' の両末端クオリティの低いまたはエラーが発生しやすいシークエンスを除外した後に残るシークエンスの領域です。「Electropherogram」ビューと「Sequence」ビューでは、除外されたデータは灰色で表示されます。Clear Range 外の塩基を編集することはできません。

重要！ Analysis Protocol で Clear Range オプションが選択されていない場合や、サンプルがポストプロセッシングされていない場合には、Clear Range の表示はできません。

Clear Range の変更

Clear Range は、次のものを使用して変更できます。
- Clear Range ウィジェット
- マウス
- 「Set Clear Range」ダイアログボックス
Clear Range ウィジェットの使用

注：この手順は、Clear Range がすでに存在しているサンプルにのみ適用されます。

Clear Range ウィジェットを使用して Clear Range を変更するには

1. 「Electropherogram」タブを選択します。
2. 5’（CR 開始）または 3’（CR 終了）ウィジェットを探して選択します。
   選択されたウィジェットは、灰色から黒に変わります。

   ATGTTGCTC
   5’（CR 開始）ウィジェット
   TATATATTGG
   3’（CR 終了）ウィジェット

3. ウィジェットを、必要に応じて塩基の左右にドラッグします。
4. カーソルを放します。新規の Clear Range が表示されます。
5. 反対側についてもこの手順を繰り返して、新規の Clear Range を定義します。

マウスの使用

マウスを使用して Clear Range を変更するには

1. 5’（CR 開始）または 3’（CR 終了）ウィジェットの新規の位置を表す 2 つの塩基間にカーソルを置き、右クリックします。次のダイアログ ボックスが開きます。

   新規のウィジェット位置
   元のウィジェット位置
   444 522 580 638 696
   TACATCTGGTTGCT
   35 55 6

2. 次のうちの 1 つを選択します。

<table>
<thead>
<tr>
<th>移動する対象</th>
<th>選択する項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR 開始ウィジェット</td>
<td>Set CR start [</td>
</tr>
<tr>
<td>CR 終了ウィジェット</td>
<td>Set CR end ]</td>
</tr>
</tbody>
</table>

3. 反対側についてもこの手順を繰り返して、新規の CR ウィジェット位置を定義します。
「Set Clear Range」ダイアログ ボックスの使用

ダイアログ ボックスを使用して Clear Range 値を変更するには

1. 変更するサンプルを選択します。

2. 「Electropherogram」または「Sequence」ビューで、新規の開始塩基対番号と終了塩基対番号を決定します。

3. 「Tools」> 「Set Clear Range」を選択します。次のダイアログ ボックスが開きます。

4. 手順 2 で決定した塩基対の値を入力し、「OK」をクリックします。
   新規の Clear Range が開きます。

---

Applied Biosystems DNA Sequencing Analysis ソフトウェア v5.1 ユーザーガイド 4-9
パターンの検索

検索コマンド
「Edit」メニュードで「Find」([Ctrl] + [F]) および「Find Again」([Ctrl] + [G]) コマンドを使用すると、シーケンス内で特定の塩基または塩基パターンを検索できます。検索操作は、「Sequence」または「Electropherogram」ビュー タブで行えます。

シーケンス内でパターンの検索
シーケンス内でパターンを検索するには
1. 「Sequence」または「Electropherogram」タブを選択します。
2. シーケンス内で検索を開始する位置をクリックします。
   注：カーソル位置から検索が開始し、自動的に折り返します。大文字 / 小文字は区別されません。
3. 「Edit」 > 「Find」を選択します。「Find」ダイアログ ボックスが開きます。

4. 「Search for」フィールドに検索命令を入力します。
検索文字列には、標準の塩基文字 (G、A、T、C) パターンの他に、IUPAC/IUB 文字も含めることができます（定義については「用語集」を参照）。
詳細については、4-10 ページの「検索する文字の表現について」を参照してください。
5. 「Search for」フィールドに入力した塩基の文字の種類と一致するオプション ボタンを選択します。
6. 「Find」をクリックして検索を開始します。

Sequencing Analysis ソフトウェアにより、指定したパターンの最初の部分がハイライトされ、「Sequence」または「Electropherogram」タブの上部にあるサマリー グラフィックで対応する位置がマークされます。
7. 「Edit」 > 「Find Again」を選択して、同じパターンが他にもあるかどうかを検索します。

検索する文字の表現について
次の表では、「Find」ダイアログ ボックスを使用して実行可能な 2 種類の検索について説明します。

<table>
<thead>
<tr>
<th>検索の種類</th>
<th>検索対象のパターン</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiteralString</td>
<td>「Find what?」フィールドに入力した内容と完全に一致するもの。</td>
</tr>
<tr>
<td>IUPAC/IUB Codes</td>
<td>パターンの一部として IUB 文字を含むもの&lt;br&gt;「Find」コマンドにより、検索対象となるものがすべて検出されます。&lt;br&gt;たとえば、パターンとして TAR を入力した場合、「Find」コマンドにより TAG と TAA のどちらも検出されます。&lt;br&gt;E-2 ページの「IUPAC/IUB コード」の IUB コードを参照するか、「Help」 &gt; 「IUPAC Codes」を選択します。</td>
</tr>
</tbody>
</table>
「Electropherogram」ビューにおけるオリジナルデータの表示

「Electropherogram」ビューでは、元のシーケンスデータを表示できます。この機能は、このビューで塩基を編集する際に特に便利です。

オリジナルデータの表示

「Electropherogram」ビューでオリジナルデータを表示するには
1. 「Sample Manager」ウィンドウで「Electropherogram」タブを選択します。
2. 「View」＞「Show Original Sequence」を選択するか、をクリックします。

<table>
<thead>
<tr>
<th>行</th>
<th>表示されるデータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>上</td>
<td>元の編集不可能なデータ</td>
</tr>
<tr>
<td>下</td>
<td>編集可能なコピー</td>
</tr>
</tbody>
</table>

オリジナルデータを非表示にする

オリジナルデータの表示/非表示を切り替えるには、「View」＞「Show Original Sequence」を選択するか、をクリックします。

オリジナルデータが表示されているときは、「Hide Original Sequence」がメニューに表示されます。
データの相補鎖の表示

「Electropherogram」および「Sequence」ビューでは、データの相補鎖を表示できます。これにより、各塩基がその相補鎖に変更され、5’から3’の方向に書き直された表示になります。

相補鎖データの表示
データの相補鎖を表示するには
1. 「Sample Manager」ウィンドウで適切なビューを選択します。
2. 「Tools」 > 「Reverse Complement」を選択します。

<table>
<thead>
<tr>
<th>ビュー</th>
<th>変更された項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electropherogram</td>
<td>ベースコールと方向</td>
</tr>
<tr>
<td>Sequence</td>
<td>方向</td>
</tr>
<tr>
<td>Raw Data</td>
<td>方向</td>
</tr>
</tbody>
</table>

図4-3 5’から3’の例

図4-4 相補鎖（3’から5’）の例

オリジナルデータに戻る
オリジナルデータと相補鎖データの間を切り替えるには、「Tools」 > 「Reverse Complement」を選択します。相補鎖データが表示されると、メニュー内のコマンドの横にチェックマークが表示されます。
Quality Value の表示

重要！KB Basecaller で解析されたサンプルのみに QV があります。

Quality Value (QV) は、Basecaller 精度の塩基当たりの推定値です。オプションで、QV は、サンプル内の各塩基の上にバーとして表示されます。バーの高さと色が QV を示します。バーが高いほど、高い QV を表しています。値に関連付けられた色は、Display Settings で編集可能です。

ミックスペースの読み取りでは、単一の塩基の読み取りよりも低い QV が生成されます。

Quality Value の表示

「Electropherogram」または「Sequence」ビューでサンプルを表示したときに QV バーが表示されない場合、次の手法のいずれかを実行します。

「Show Quality Values」機能を使用する

Quality Value のバーと番号を表示するには

1. 「View」＞「Show Quality Values」を選択するか、をクリックします。
2. 特定のバーの数値を表示するには、そのバーの上にカーソルを 2 秒間置いてください。数値が自動的に表示されます。

「Display Settings」機能を使用する

Quality Value のバーを表示するには

1. 「Analysis」＞「Display Settings」を選択するか、をクリックします。
2. 「Bases」タブを選択します。
3. 「Sample File Display」セクションで、「QV Bars」チェックボックスを選択します。
4. 「OK」をクリックします。

QV の詳細および表示をカスタマイズする方法については、第 6 章「Quality Value」を参照してください。
解析されたデータの編集

「Sequence」または「Electropherogram」ビューで表示された塩基を編集することができます。ただし、サンプルを再解析した場合や保存しなかった場合、編集されたデータは失われます。

注：Clear Range 外の塩基を編集または削除することはできません。これらの塩基を編集または削除するには、Clear Range の設定を調整してください（4-7 ページの「Clear Range の変更」を参照）。

<table>
<thead>
<tr>
<th>操作</th>
<th>手順</th>
</tr>
</thead>
<tbody>
<tr>
<td>シーケンスに塩基を追加する</td>
<td>1. 1 つまたは複数の塩基を追加するシーケンス内の位置に挿入ポイントを置きます。 2. 挿入する文字を入力します。これにより、プログラムで認識される塩基識別文字（IUPAC/IUB コードを含む）をすべて追加できるようになります。E-2 ページの「IUPAC/IUB コード」を参照してください。</td>
</tr>
<tr>
<td>シーケンスから塩基を削除する</td>
<td>削除する塩基をシングルクリックし、[Delete] キーを押します。</td>
</tr>
<tr>
<td>シーケンス内の塩基を変更する</td>
<td>変更する塩基をシングルクリックし、その位置に対して新規の文字を入力します。</td>
</tr>
</tbody>
</table>

塩基間の移動

移動する塩基を選択し、3-21 ページの表 3-3 のキーボード ショートカットを使用して、次の塩基に移動します。

<table>
<thead>
<tr>
<th>編集を行ったビュー</th>
<th>影響</th>
</tr>
</thead>
<tbody>
<tr>
<td>「Sequence」ビュー</td>
<td>「Electropherogram」ビューは更新され、変更された「Sequence」ビューのデータと一致します。編集された塩基は、小文字で表示されます。</td>
</tr>
<tr>
<td>「Electropherogram」ビュー</td>
<td>「Sequence」ビューは即座に更新され、変更された「Electropherogram」ビューのデータと一致します。編集された塩基は、小文字で表示されます。</td>
</tr>
</tbody>
</table>
サンプル ファイルの保存

サンプル ファイル内のデータは、編集、ベース コーリング、およびポスト プロセッシング（またはそのいずれか）の後、自動的には保存されません。

注：サンプル ファイルの解析時に .seq ファイルが作成されている場合、サンプル ファイルを保存すると、サンプル ファイルと .seq ファイルの両方が更新されます。

選択したサンプル ファイルを保存するには
1. 保存するサンプルを選択します。
2. をクリックするか、「File」 > 「Save Sample(s)」を選択します。

すべてのサンプル ファイルを保存するには
1. をクリックするか、「File」 > 「Save All Samples」を選択します。「Save Sample Confirmation」ダイアログ ボックスが開きます。

2. 「Yes」をクリックして各サンプルを保存するか、「Yes to All」をクリックしてサンプル マネージャ内のサンプルをすべて保存します。

読み取り専用サンプル ファイルの保存
CD からハード ディスクにサンプル ファイルをコピーした場合、または CD からサンプル ファイルをインポートした場合、そのファイルの属性は読み取り専用になります。サンプル ファイルに対して行った変更を、元のファイルに保存することはできません。読み取り専用のサンプル ファイルを保存するには、4-15 ページの手順に従ってください。

読み取り専用のサンプル ファイルを保存するには
1. 選択したサンプルを保存する場合は、保存するサンプルのサンプル列を選択し、 をクリックするか、「File」 > 「Save Sample(s)」を選択します。
2. すべてのサンプルを保存する場合は、 をクリックするか、「File」 > 「Save All Samples」を選択します。
2. ブラウス ボタンをクリックします。2 番目の「Choose Directory」ダイアログ ボックスが開きます。

3. フォルダのある場所を探して選択し、「Choose Directory」をクリックします。

4. 「OK」をクリックします。

5. すべてのサンプルを保存する場合は、「Yes」をクリックして各サンプルを保存するか、「Yes to All」をクリックしてサンプル マネージャ内のサンプルをすべて保存します。
サンプルウィンドウビューの印刷

印刷は手動で行うことも、Sequencing Analysis ソフトウェアで自動的に実行することもできます。

印刷前に、次の手順を実行します。

・プリンタを設定し、コンピュータまたはネットワークに接続する
・Windows® XP または 2000 オペレーティングシステムでデフォルトのプリンタを設定する

サンプルファイルの手動印刷

データを手動で印刷するには

1. 印刷するサンプルを「Sample Manager」ウィンドウに追加します。
2. 列番号カラムで、印刷する 1 つまたは複数のサンプルを選択します。
   • サンプル列をクリックして選択する
   • [Shift] キーを押しながらドラッグして、連続したサンプル列を選択する
   • [Ctrl] キーを押しながらクリックして、連続していないサンプル列を選択する
3. 「File」> 「Page Setup」を選択し、次の手順を実行します。

   a. 「Media」セクションで、ドロップダウンリストから用紙と給紙方法を選択します。
   b. 「Orientation」セクションで、印刷の向きを選択します。
   c. 「Margins」セクションで、使用するプリンタに応じて余白を変更します。
   d. 「OK」をクリックします。
4. 「File」> 「Print」を選択するか、空白領域をクリックします。「Print」ダイアログボックスが開きます。

![Printダイアログボックスのスクリーンショット]

5. 「Print」ダイアログボックスで、次の手順を実行します。
   a. 「Panels Per Page」ドロップダウンリストで値を選択します。範囲は 1 ~ 15、デフォルトは 4 です。

   注：一般に、ページ当たりのパネル数が 8 より大きい値に設定された場合、Quality Value は印刷されない可能性があります。Quality Value を印刷できるページ当たりの最大パネル数は、用紙サイズ、余白、印刷の向きによって異なります。

   b. 「Points Per Panel」値ボックスで値を選択します。範囲は 100 ~ 12000、デフォルトは 1500（約 120 塩基）です。

   c. エレクトロフェログラム、Raw Data、EPT データを印刷する場合、「Show Vertical Axis on Graphs」を選択/選択解除します。

   d. シーケンスとエレクトロフェログラムを印刷する場合、「Show QV Bars」を選択/選択解除します。

   e. 印刷するビューとページ数を選択します。

   f. 「Print」をクリックします。2 番目の「Print」ダイアログボックスが開きます。

![Printダイアログボックスのスクリーンショット]

6. 必要に応じて設定を確認、変更し、「Print」をクリックします。「Print」ダイアログボックスが閉じて、印刷が開始します。

 Applied Biosystems DNA Sequencing Analysis ソフトウェア v5.1 ユーザーガイド
サンプルファイルの自動印刷

1. 印刷するサンプルを「Sample Manager」ウィンドウに追加します。
2. 「Tools」> 「Options」を選択します。「Options」ダイアログボックスが開きます。
3. 「Printing」タブを選択し、次の手順を実行します。

![印刷設定の画面](image)

a. 「Panels Per Page」ドロップダウンリストで値を選択します。範囲は1 ～ 15、デフォルトは4です。

注：一般に、ページ当たりのパネル数が8よりも大きい値に設定された場合、Quality Valueは印刷されない可能性があります。Quality Valueが印刷できるページ当たりの最大パネル数は、用紙サイズ、余白、印刷の向きによって異なります。

b. 「Points Per Panel」値ボックスで値を選択します。範囲は100 ～ 12000、デフォルトは1500（約120塩基）です。

c. エレクトロフォレログラム、Raw Data、EPTデータを印刷する場合、「Show Vertical Axis on Graphs」を選択/選択解除します。

d. シーケンスとエレクトロフォレログラムを印刷する場合、「Show QV Bars」を選択/選択解除します。

e. 「Use Printer」ドロップダウンリストからプリンタを選択します。

f. 印刷するビューとページ数を選択します。
4. 「Page Setup」をクリックし、次の手順を実行します。

   ![Page Setup Dialog Box](image)

   a. 「Media」セクションで、ドロップダウンリストから用紙と給紙方法を選択します。
   b. 「Orientation」セクションで、印刷の向きを選択します。
   c. 「Margins」セクションで、使用するプリンタに応じて余白を変更します。
   d. 「OK」をクリックします。

5. 「OK」をクリックします。

   注：「Options Printing」ダイアログボックスで設定を行った後は、自動印刷設定を変更する場合を除いて、操作を繰り返す必要はありません。

6. 印刷するすべてのサンプルに対して、Sample Manager で「P (Printing)」パラメータチェックボックスを選択します。

   注：「P」チェックボックスを選択している場合、「Options」ダイアログボックスの「Printing」タブで印刷対象に選択したオプションのみが印刷されます。

   注：印刷前にデータの再解析を行う必要がない場合、「BC」および「PP」チェックボックスの選択を解除してください。

7. をクリックします。

   印刷が開始します。

印刷処理が完了すると、「P」カラムに色コードでステータスが表示されます。緑は成功、赤は失敗を表します。また、「P」カラム内でチェックされたコマンドはオフになります。
印刷されたエレクトロフェログラムの表示

印刷されたエレクトロフェログラムには、解析されたデータの4色ビューが表示されます。ビーグは塩基を表しています。

各ページに表示されるパネル数を設定するには、「Options」ダイアログボックスの「Printing」タブ、または「File」メニューの「Print」ダイアログボックスで「Panels Per Page」テキストボックスを使用します。

ページ当たりのパネル数の詳細については、8-23ページの「Printing」タブまたは4-17ページの「サンプルファイルの手動印刷」を参照してください。

エレクトロフェログラムを印刷すると、画面上に表示されたエレクトロフェログラムと比べて、次のような点で有用です。

- 「Annotation」ビューでのみ画面表示が可能なプレートレコード情報も含まれる
- 1枚のページに複数のデータパネルを表示。画面上では、同時に1つのデータセクションしか表示できません。

波形の色と塩基の色

「Electropherogram」ビューでは、次に示すように、色はシークエンス内個々の塩基を表しています。各ビーグの上にある文字は、対応する塩基の色に応じて色分けされています。

<table>
<thead>
<tr>
<th>塩基</th>
<th>色</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>青</td>
</tr>
<tr>
<td>A</td>
<td>緑</td>
</tr>
<tr>
<td>G</td>
<td>黒</td>
</tr>
<tr>
<td>T</td>
<td>赤</td>
</tr>
</tbody>
</table>

ヘッダとフッタの印刷

印刷されたエレクトロフェログラムのヘッダとフッタには、ランに関する情報が含まれており、トラブルシューティングに役立つことがあります。次の図と表で、ヘッダとフッタの内容を説明します。

<table>
<thead>
<tr>
<th>シグナル/ノイズ</th>
<th>Basecaller名</th>
<th>Basecallerのバージョン、キャピラリ番号</th>
<th>装置モデル</th>
<th>解析の日付と時刻</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>サンプルファイル名、サンプル名</td>
<td>データ取り込みの日付と時刻</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DyeSet/Primerファイル</td>
<td>Spacing、ポイント数/パネル</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ポイント、Peak1Location</td>
<td>ラン名、プレート名</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SeqAバージョン、高QV塩基</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図4-5 印刷されたヘッダ情報の例

図4-6 印刷されたフッタ情報の例
表 4-1 印刷されたヘッダ情報

<table>
<thead>
<tr>
<th>フィールド</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>第 1 カラム</td>
<td></td>
</tr>
<tr>
<td>Signal/Noise</td>
<td>シグナルとノイズ比</td>
</tr>
<tr>
<td></td>
<td>各塩基のシグナル強度の平均値を、その塩基のノイズの平均値で除算したものです。</td>
</tr>
<tr>
<td>Basecaller name</td>
<td>データの解析に使用された Basecaller の名前</td>
</tr>
<tr>
<td>Basecaller version, capillary number</td>
<td>• データの解析に使用された Basecaller のバージョン</td>
</tr>
<tr>
<td></td>
<td>• データの作成に使用されたキャピラリの番号</td>
</tr>
<tr>
<td>第 2 カラム</td>
<td></td>
</tr>
<tr>
<td>Sample file name</td>
<td>サンプルファイルに使用された名前</td>
</tr>
<tr>
<td></td>
<td>ハードドライプに保存された、「Sample Manager」ウィンドウの「File Name」カラム内の名前</td>
</tr>
<tr>
<td>Sample name</td>
<td>プレートレコードの「Sample Name」カラムに入力された名前</td>
</tr>
<tr>
<td>DyeSet/Primer file</td>
<td>解析中にモビリティ シフトの調整に使用された DyeSet/Primer ファイル</td>
</tr>
<tr>
<td>Points, Peak 1 Loc:</td>
<td>• データの解析に使用されたデータポイントの範囲</td>
</tr>
<tr>
<td></td>
<td>• Peak 1 Location は、解析されたデータの開始するデータポイントです。</td>
</tr>
<tr>
<td>SeqA version, HighSQV bases</td>
<td>• データの解析に使用された Sequencing Analysis ソフトウェアのバージョン</td>
</tr>
<tr>
<td></td>
<td>• 高い QV 値をもつ塩基の数</td>
</tr>
<tr>
<td>第 3 カラム</td>
<td></td>
</tr>
<tr>
<td>Instrument Model/Name</td>
<td>データの取り込みに使用された装置モデル</td>
</tr>
<tr>
<td>Date and time of analysis</td>
<td>解析が行われた日付と時刻</td>
</tr>
<tr>
<td>Date and time of collection</td>
<td>データ取り込みが行われた日付と時刻</td>
</tr>
<tr>
<td>Spacing, points/panel</td>
<td>• Basecaller によって計算された Spacing 値</td>
</tr>
<tr>
<td></td>
<td>• データの表示に使用されたパネル当たりのデータポイント数</td>
</tr>
<tr>
<td>Run/Plate Name</td>
<td>• ランの名前</td>
</tr>
<tr>
<td></td>
<td>• プレートの名前</td>
</tr>
</tbody>
</table>

表 4-2 印刷されたフッタ情報

<table>
<thead>
<tr>
<th>フィールド</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Print date</td>
<td>印刷の日付と時刻</td>
</tr>
<tr>
<td>View type, page x of x</td>
<td>• ビューのタイプ：Annotation、Sequence、Electropherogram、Raw Data、またはEPT</td>
</tr>
<tr>
<td></td>
<td>• このページのページ番号と合計ページ数</td>
</tr>
</tbody>
</table>
Sample Manager の使用

この章では、次の項目について説明します。

Sample Manager について .......................... 5-2
「Show」チェック ボックス .......................... 5-4
Sample File Name ...................................... 5-5
Sample Name ........................................... 5-5
データ プロセッシング パラメータ .......................... 5-6
解析パラメータ ........................................... 5-9
計算結果 .................................................. 5-15
解析パラメータの変更 .................................. 5-17
Sample Manager からの解析パラメータの変更 .................... 5-18
Analysis Protocol における解析パラメータの変更 ................ 5-21
**Sample Manager について**

「Sample Manager」ページ

Sample Manager は、サンプルファイルとその現在のAnalysis Settingsを表示できるウィンドウです。設定を修正して、サンプルに適用することができます。単一のサンプル、複数のサンプル、またはウィンドウ内のすべてのサンプルに設定の変更を適用できます。

解析パラメータは、Sample ManagerまたはAnalysis Protocolで変更できます。

マトリックスファイルは310および377データにのみ使用されます。

サンプルを表示するスクロールバー

他のサンプルを表示するスコールバー

複数サンプルをまとめてスクロールするスクロールバー

「Show」チェックボックスを使用して、サンプルデータを表示します。

「Sample Manager」ページおよび「Sample View」ページにおけるサンプル

スプリットバーを使用して、「Sample Manager」ページと「Sample View」ページのサイズを調整します。
表 5-1 「Sample Manager」ウィンドウの項目

<table>
<thead>
<tr>
<th>項目</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show</td>
<td>「Sample View」 ウィンドウにサンプルを表示するためのチェック ボックスです。</td>
</tr>
<tr>
<td>Sample File Name</td>
<td>プレート レコードの情報です。 Sample Manager では変更できません。</td>
</tr>
<tr>
<td>Sample Name</td>
<td>プレート レコードから取得されたサンプルの名前です。変更が可能です。</td>
</tr>
<tr>
<td>BC (Basecalling)</td>
<td>選択されたファイルをベースコール（解析）します。</td>
</tr>
<tr>
<td>PP (Post processing)</td>
<td>選択されたファイルの Clear Range を定義します。</td>
</tr>
<tr>
<td>P (Print)</td>
<td>選択されたファイルを印刷します。</td>
</tr>
</tbody>
</table>

解析パラメータ

<table>
<thead>
<tr>
<th>項目</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basecaller</td>
<td>塩基を読み取るために使用されるアルゴリズムです。</td>
</tr>
<tr>
<td>DyeSet/Primer</td>
<td>DyeSet/Primer ファイルは、使用されたケミストリに応じて、モビリティシフトや色コードの変更を補正します。</td>
</tr>
<tr>
<td>Matrix File</td>
<td>4 つまたは 5 つの蛍光色素に対して、蛍光スペクトルのオーバーラップを補正するファイル。</td>
</tr>
<tr>
<td></td>
<td>• ベース コーリング中にマトリックスが適用されるため、310 および377 データに使用される</td>
</tr>
<tr>
<td></td>
<td>• データ収集中にマトリックスがデータに適用されるため、3100/3100-Avant、3700、または3730/3730xl データには使用されない</td>
</tr>
</tbody>
</table>

計算結果

<table>
<thead>
<tr>
<th>項目</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacing</td>
<td>Spacing は、あるピークの頂点から次のピークの頂点までのスキャン ポイント数によって定義されます。</td>
</tr>
<tr>
<td>Peak 1 Location</td>
<td>サンプルの生データの最初のポイント（ダイプライマー ケミストリではプライマー ピークを除く）。ベース コーリング ソフトウェアにより Spacing 計算とモビリティ補正が行われるリファレンス ポイントです。</td>
</tr>
<tr>
<td>Start Point</td>
<td>Start Point は、サンプル ファイル内でベース コーリングが開始される Raw Data 上のポイントです。Start Point は通常、最初の塩基ピークのStart Point と同じです。</td>
</tr>
<tr>
<td>Stop Point</td>
<td>Stop Point は、ベース コーリングに含まれる最後の Raw Data ポイントを指定します。</td>
</tr>
</tbody>
</table>
「Show」チェック ボックス

「Show」チェック ボックスは、サンプル ファイル データの表示に使用されます。「Sample Manager」または「Sample Navigator」ビューで、1つまたは複数のサンプル ファイルを表示できます。

<table>
<thead>
<tr>
<th>表示対象のデータ</th>
<th>操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>単一サンプル</td>
<td>サンプル ファイル名をダブルクリックするか、対応する「Show」チェック ボックスを選択します。</td>
</tr>
<tr>
<td>連続した複数のサンプル</td>
<td>[Shift] キーを押しながらサンプル列番号をクリックまたはドラッグしてサンプル ファイルを選択した後、「View」＞「Show Data Displays」を選択します。</td>
</tr>
<tr>
<td>不連続の複数のサンプル</td>
<td>[Ctrl] キーを押しながらサンプル列番号をクリックしてサンプル ファイルを選択した後、「View」＞「Show Data Displays」を選択します。</td>
</tr>
<tr>
<td>すべてのサンプル</td>
<td>列番号 1 の上にある空のボックスを選択するか、[Shift] キーを押しながらサンプル列番号をドラッグしてすべてのサンプルを選択した後、「View」＞「Show Data Displays」を選択します。</td>
</tr>
</tbody>
</table>

注：サンプル ファイル名をダブルクリックすると、「Show」チェック ボックスですでにチェックされているサンプルはすべて選択解除され、ダブルクリックしたサンプル ファイルのみがチェックされます。
Sample File Name

Sample File Name は、サンプル情報を含むファイルです。サンプルまたはデータベースファイル名は、「Sample Manager」ウィンドウ内では変更することができません。これは Data Collection ソフトウェアを使用して作成されています。

サンプルファイル名は、ハードディスクから参照された場合、サンプルファイルのアイコンと共に表示されます。すべてのサンプルファイルには拡張子 .ab1 が付いており、長さは最大 255 文字（拡張子 .ab1 を含む）です。

サンプルファイルの表示

「Sample Manager」または「Sample Navigator」ページでのみ、「Show」チェックボックスを選択してサンプルを表示できます。サンプルの追加方法の詳細については、3-9 ページの「Sample Managerへのサンプルファイルの追加」を参照してください。

サンプルファイル名の変更

サンプルファイル名の変更は、「Sample Manager」ウィンドウ内では行えません。ファイル名を変更するには、ファイルを右クリックした後、名前を入力します（Microsoft® Windows® オペレーティングシステムにおける他のファイルの場合と同様です）。

注：サンプルファイル名の変更の詳細については、該当する装置のユーザー ガイドを参照してください。

Sample Name

Sample Name は、サンプルの名前です。サンプル名は、Data Collection ソフトウェアを使用して設定します。

注：サンプル名は、サンプルファイルの名前とは別個のものです。ただし、両者に同じ名前を割り当てたり、Sample Manager で名前を変更することができます。

サンプル名の変更

最大 255 文字の名前を入力することで、「Sample Manager」ウィンドウでサンプル名を編集できます。新規の名前は、ファイルの保存時にサンプル内に記録されます。サンプルファイル名の横にあるアイコンが、から に変わります。

注：サンプル内の情報は通常、サンプル名を介してプレートレコード情報に関連付けられますが。サンプル名を変更するとこの関連付けがなくなります。ラベルタイムとレーン番号を使用してサンプルの情報元を検索できますが、関連付けが必要となるまでは、元のサンプル名を保持する方が容易です。

Sample Manager の印刷モード

- Portrait モード - サンプル名の 40 文字が印刷されます。
- Landscape モード - サンプル名の 43 文字が印刷されます。
データ プロセッシング パラメータ

BC（Basecalling）パラメータ

BC パラメータは、（Start Analysis）のクリック時にサンプルのベース コーリングを実行するチェック ボックス オプションです。

'Sample Manager' ウィンドウで BC パラメータ設定を変更すると、ソフトウェアにより、このチェック ボックスが Analysis Defaults の「BC」チェック ボックスと一致するように設定されます。

BC パラメータ設定の 変更

'Sample Manager' ウィンドウで BC パラメータ設定を変更するには、チェック ボックスを選択 / 選択解除します。

チェック ボックスの カラー ステータス

チェック ボックスの色は、解析ステータスを示しています。カラー ステータスは、新規のサンプル処理が開始するたびにクリアされます。

<table>
<thead>
<tr>
<th>チェック ボックスの色</th>
<th>意味</th>
</tr>
</thead>
<tbody>
<tr>
<td>緑</td>
<td>解析の成功、データ出力</td>
</tr>
<tr>
<td>黄</td>
<td>クオリティの低いデータ、部分的なデータ出力</td>
</tr>
<tr>
<td>赤</td>
<td>解析の失敗、データ出力なし</td>
</tr>
</tbody>
</table>
| 色なし               | 「Sample Manager」ウィンドウでサンプルが追加された後、開始されていません。 以前に完了済みで、「Sample Manager」ウィンドウ内にまだ存在しています。

*KB Basecaller によって解析されたクオリティの低いデータの部分的な出力ファイルが利用可能です。部分的出力ファイルには、ベース コーリングされたデータではなく 5 つの N が含まれています。
**PP（Post Processing）パラメータ**

PPパラメータは、（Start Analysis）のクリック時にベースコールされたサンプルのポストプロセッシングを実行するチェックボックスオプションです。

PPパラメータ（ポストプロセッシング）が選択されている場合、Clear Rangeが計算されます。

Clear Rangeは、5'と3'の両末端で低品質またはエラーが発生しやすいシークエンスを除外した後に残るシークエンスの領域です。KB Basecallerが解析に使用された場合、Clear RangeはQVから計算されます。ABI Basecallerが使用された場合、範囲はデータ内のNから計算されるか、データのStart PointとStop Pointで塩基数だけ切り捨てられます（またはその両方が行われます）。

### 設定の変更

「Sample Manager」ウィンドウの設定を変更するには、チェックボックスをクリックします。

<table>
<thead>
<tr>
<th>状態</th>
<th>処置</th>
</tr>
</thead>
<tbody>
<tr>
<td>「PP」チェックボックスが選択されている</td>
<td>ポストプロセッシングが行われます。 &lt;br&gt;注：データがベースコールされるまで、未解析データのポストプロセッシングは行えません。</td>
</tr>
<tr>
<td>「BC」と「PP」両方のチェックボックスが選択されている</td>
<td>まずベースコーリングが行われ、次にポストプロセッシングが行われます。</td>
</tr>
</tbody>
</table>

### チェックボックスのカラー ステータス

このチェックボックスの色は、ポストプロセッシングステータスを示しています。カラーステータスは、新規のサンプル処理が開始するたびにクリアされます。

<table>
<thead>
<tr>
<th>チェックボックスの色</th>
<th>ポストプロセッシングの状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>緑</td>
<td>成功</td>
</tr>
<tr>
<td>赤</td>
<td>失敗</td>
</tr>
<tr>
<td>色なし</td>
<td>- 「Sample Manager」ウィンドウにサンプルが追加された後、開始されていません。 &lt;br&gt;- 以前に完了済で、「Sample Manager」ウィンドウ内にまだ存在しています。</td>
</tr>
</tbody>
</table>
第5章  Sample Manager の使用

P（Printing）パラメータ

Pパラメータは、「Sample Manager」ウィンドウのチェックボックスオプションです。すべての処理が完了した後、サンプルに対して「Printing」オプションで選択された情報を印刷します。

設定の変更

チェックボックスをクリックして、「Sample Manager」ウィンドウの設定を変更します。 「BC」および「PP」チェックボックス（またはそのいずれか）も選択している場合、そのサンプルの他の処理がすべて完了した後、印刷が行われます。

チェックボックスのカラーステータス

このチェックボックスの色は、印刷ステータスを示しています。カラー ステータスは、新規のサンプル処理が開始するたびにクリアされます。

<table>
<thead>
<tr>
<th>チェック ボックスの色</th>
<th>印刷の状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>緑</td>
<td>成功</td>
</tr>
<tr>
<td>赤</td>
<td>失敗</td>
</tr>
<tr>
<td></td>
<td>プリンタの接続を確認します。必要に応じてご使用のプリンタのマニュアルを参照してください。</td>
</tr>
<tr>
<td>色なし</td>
<td>「Sample Manager」ウィンドウにサンプルが追加された後、開始されていません。</td>
</tr>
</tbody>
</table>
解析パラメータ

**Basecaller ファイル**

Basecaller パラメータは、最新のサンプル解析中に塩基を識別するために使用されます。Basecaller には、次の 2 つのタイプがあります。

- KB - ミックス ベースまたは単一の塩基、および Quality Value を計算する新しいアルゴリズム
- ABI – ABI PRISM® Sequencing Analysis ソフトウェアの旧バージョン（v3.7 以前）で使用されるアルゴリズム

![Basecaller ファイル一覧]

図 5-2 ソフトウェアに付属の Basecaller ファイルのリスト

**推奨する Basecaller**

Applied Biosystems では、解析に KB Basecaller を使用することをお勧めします。

- KB Basecaller は、Sequencing Analysis ソフトウェア v5.0 および ABI PRISM® SeqScape ソフトウェア v2.0 に組み込まれています。このアルゴリズムは、引き続き強化、展開していく予定です。
- ABI Basecaller は古いアルゴリズムで、ソフトウェアの今後の改訂では削除される予定です。
ベース コーリング中に行われる処理

BC バラメータ（ベース コーリング）が選択されている場合、選択された Basecaller は次の処理を実行します。

・ KB Basecaller で塩基を読み取ります。
  - ミックスベースオプションが選択されている場合、ミックスベースが読み取られます。
  - ミックスベースは、1つの塩基の位置に2つの塩基が含まれることを意味します。
  - Basecaller は、A、C、G、T、または IUB コードを各塩基に割り当てます。
  - ミックスベースオプションが選択されていない場合、単一の塩基のみを読み取ります。
  - Basecaller は、A、C、G、または T を各塩基に割り当てます。
  - 単一の塩基とミックスベースの Quality Value (QV) を計算します。
  - Quality Threshold が満たされていない場合、N を読み取ります（選択されている場合）。
  - True Profile または Flat Profile でデータを処理します。または

・ ABI Basecaller で塩基を読み取ります。Basecaller は、A、C、G、T、または N を各塩基に割り当てます。

正しい Basecaller の選択

Basecaller は、いくつかのファクタに基づいて選択されます。

・ 使用している装置モデル
・ キャピラリまたはプレートの長さ、およびラン速度
・ ポリマーまたはゲルの種類
・ QV とミックスベースを読み取る（KB Basecaller）、または読み取らない（ABI Basecaller）データに対して正しい Basecaller ファイルを決定するには、次の表を参照してください。
Basecaller ファイルは、装置モデルごとにリストされています。

表 5-2 Basecaller ファイルのリスト

<table>
<thead>
<tr>
<th>装置</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>C-2</td>
</tr>
<tr>
<td>377</td>
<td>C-4</td>
</tr>
<tr>
<td>3100</td>
<td>C-5</td>
</tr>
<tr>
<td>3100-Avant</td>
<td>C-7</td>
</tr>
<tr>
<td>3700</td>
<td>C-9</td>
</tr>
<tr>
<td>3730/3730xl</td>
<td>C-10</td>
</tr>
</tbody>
</table>
DyeSet/Primer パラメータ

DyeSet/Primer ファイルは、使用されたケミストリーに応じて、モビリティシフトとカラーコードの変更を補正します。デフォルトの DyeSet/Primer は、Data Collection で指定されたファイルです。

DyeSet/Primer ファイルは、モビリティファイルまたは .mob ファイルと呼ばれることもあります。DyeSet/Primer ファイルにはすべて、拡張子 .mob が付いています。

重要！DyeSet/Primer ファイルは、使用しているケミストリーおよび Basecaller の種類と一致している必要があります。

注：DyeSet/Primer ファイルは、選択した Basecaller と装置モデルに基づいてフィルタにかけられます。

图 5-3 ソフトウェアに付属の DyeSet/Primer ファイルのリスト
DyeSet/Primerファイル命名規則

DyeSet/Primerファイル名では、文字の組合せを使用して、Basecaller、装置、ケミストリ、およびポリマーの種類を示します。省略形は次のとおりです。命名規則

<table>
<thead>
<tr>
<th>省略形</th>
<th>ラン</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basecaller</td>
<td></td>
</tr>
<tr>
<td>KB</td>
<td>KB Basecaller</td>
</tr>
<tr>
<td>DP</td>
<td>ダイプライマー・ケミストリおよびABI Basecaller</td>
</tr>
<tr>
<td>DT</td>
<td>ダイ・ターミネータ・ケミストリおよびABI Basecaller</td>
</tr>
</tbody>
</table>

ポリマーまたはゲルの種類

| 5%LR | 5 % Long Ranger ゲル（377装置のみ） |
| POP4 | ABI PRISM® POP-4™ ポリマー |
| POP5 | ABI PRISM® POP-5™ ポリマー |
| POP6 | ABI PRISM® POP-6™ ポリマー |
| POP7 | ABI PRISM® POP-7™ ポリマー |

ケミストリ

| BDTV3 | ABI PRISM® BigDye® v3.0および3.1 Terminator ケミストリ |
| (BDv3) |
| BDv1 | ABI PRISM® BigDye® v1.0および1.1 Terminator ケミストリ |
| (BD) |
| (BDv1) |
| {dRhod} | dRhodamine Terminator ケミストリ |
| (-21M13) | ダイプライマー・ケミストリー-21M13プライマーに標識されています。 |
| (M13Rev) | ダイプライマー・ケミストリーM13Revプライマーに標識されています。 |

KB_3730_POP7_BDTv3.mob

DT3100POP4{BDTv3}.mob

図5-4 DyeSet/Primerファイル命名規則の例
正しい DyeSet/Primer ファイルの選択

Basecaller は、いくつかのファクタに基づいて選択されます。
- 選択された Basecaller
- 使用している装置モデル
- ポリマーまたはゲルの種類

データに対し正しい DyeSet/Primer ファイルを決定するには、次の表を参照してください。DyeSet/Primer ファイルは、装置モデル、Basecaller ごとにリストされています。

表 5-4  DyeSet/Primer ファイルのリスト

<table>
<thead>
<tr>
<th>装置</th>
<th>参照ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>C-2</td>
</tr>
<tr>
<td>377</td>
<td>C-4</td>
</tr>
<tr>
<td>3100</td>
<td>C-5</td>
</tr>
<tr>
<td>3100-Avant</td>
<td>C-7</td>
</tr>
<tr>
<td>3700</td>
<td>C-9</td>
</tr>
<tr>
<td>3730/3730xL</td>
<td>C-10</td>
</tr>
</tbody>
</table>

モビリティ シフトの補正

Basecaller アルゴリズムでは、適切なモビリティ シフト補正を適用するために、DyeSet/Primer 情報が必要とされます。

<table>
<thead>
<tr>
<th>状況</th>
<th>状況 2</th>
<th>対処法</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Collection</td>
<td>で誤った DyeSet/Primer (モビリティ) ファイルを指定した</td>
<td>選択した DyeSet/Primer ファイル用のケミストリとは異なるケミストリを使用した</td>
</tr>
</tbody>
</table>

ファイルが存在しない場合

Sample Manager の「DyeSet/Primer」ドロップダウン リストには、Mobility フォルダ内の DyeSet/Primer ファイルがすべて表示されます。

Mobility フォルダ内で DyeSet/Primer ファイルが存在しない場合、そのファイルを使用した解析は行えません。「DyeSet/Primer」ファイル フィールド内にファイル名が文字の斜体フォントで表示されている場合、そのファイルは Mobility フォルダに存在しておらず、サンプルファイルの処理に使用することはできません。DyeSet/Primer ファイルを解析ソフトウェアの Mobility フォルダ内にコピーするには、1-16 ページの「310 マトリックスおよび DyeSet/Primer ファイルのコピー」を参照してください。

Mobility フォルダへのパスは次のとおりです。

ドライプ名：\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Mobility
マトリックス ファイル

Dye Set に含まれる蛍光色素は異なった波長の蛍光を発するため、使用された蛍光色素の蛍光スペクトルはオーバーラップします。データ解析を正しく行うために、この蛍光のオーバーラップを補正する必要があります。

マトリックス ファイルには、特定の Dye Set に含まれる蛍光色素のオーバーラップの数学的記述が含まれています。

マトリックス カラムは

- ベースコーリング中に、マトリックスがデータに適用されるため、310 および 377 データに使用される
- データ収集中にマトリックスがデータに適用されるため、3100/3100-Avant、3700、または 3730/3730xl データには使用されない

Matrix フォルダ内のマトリックス ファイルが存在しない場合、そのファイルを使用した解析は行えません。ファイル名が Sample Manager の「Matrix」フィールドに太字の斜体フォントで表示されている場合、そのファイルは Matrix フォルダ内に存在しません。解析フォルダの Matrix フォルダ内のファイルをコピーするには、1-16 ページの「310 マトリックスおよび DyeSet/Primer ファイルのコピー」および 1-21 ページの「377 マトリックス ファイルのコピー」（またはそれぞれのか）を参照してください。

Matrix フォルダへのパスは次のとおりです。
ドライブ名：\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Matrix
計算結果

Spacing パラメータ
Spacing は、あるピークの頂点から次のピークの頂点までのスキャンポイント数によって定義されます。ベースコーリング中、Spacing 値を決定するために、スペーシング キャリプレーション カーブがデータに適用されます。Spacing 値を決定できなかった場合は、Basecaller ファイル内のデフォルト値が使用されています。

テキストの色と種類は、計算されたSpacing のステータスを示しています。

<table>
<thead>
<tr>
<th>テキスト</th>
<th>Spacing 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>標準</td>
<td>決定済み</td>
</tr>
<tr>
<td>赤</td>
<td>決定できず、Basecaller ファイル内のデフォルト値使用</td>
</tr>
</tbody>
</table>

再計算
ソフトウェアによりSpacing パラメータを再計算するには、値を0に設定した後、サンプルを再解析します。

Peak 1 Location パラメータ

はじめに
Peak 1 Location 値は、サンプルからの最初のデータポイント（デイプライマー ケミストリではプライマー ピークを除く）として定義されます。

この値は最初に、Sequencing Analysis ソフトウェアによって計算されます。

ベースコーリングソフトウェアによりSpacing 計算とモビリティ補正が行われるリファレンスポイントです。

Peak 1 Location の変更
「Sample Manager」ウィンドウ内でPeak 1 Location パラメータを変更するには、「Peak 1 Location」フィールドに新規の値を入力した後、サンプルを再解析します。

Peak 1 Location 値を変更すると、モビリティシフトの補正のためにDyeSet/Primer ファイルが適用される方法に影響が生じます。これは、Peak 1 Location がモビリティ補正にリンクされているためです。

注：Spacing は、以前の Peak 1 Location 値を使用して計算されたSpacing とは異なっている場合があります。

最初のベース ピークを使用しない場合
最初のベース ピークの位置以外で解析を開始するには、Peak 1 Location ではなく Start Point の値を変更します。

Peak 1 Location の値が誤っている場合
データ解析の開始点（Start Point）は通常、Peak 1 Location の値により決定されます。

<table>
<thead>
<tr>
<th>状態</th>
<th>影響</th>
</tr>
</thead>
<tbody>
<tr>
<td>シグナルが弱いまたは他の異常のために Peak 1 Location の値が誤っている</td>
<td>データで誤ったSpacing または異常なモビリティシフトが発生する可能性有り</td>
</tr>
</tbody>
</table>

目的
サンプルで最初のベース ピークの開始点を検出す

5-19ページの「Peak 1 Location」
再計算
Peak 1 Location の値を再計算するには、値を 0 にリセットします。次は、サンプル解析時、ソフトウェアにより Peak 1 Location, Start Point, Stop Point, および Spacing が再計算されます。

**Start Point パラメータ**

Start Point パラメータは、サンプルファイル内でのベースコーリングが開始する Raw Data ポイントです。Start Point は通常、最初のベースピークの開始点と同じです（5-15 ページの「Peak 1 Location パラメータ」を参照）。

**データでの塩基読み取り開始位置を後ろへずらす**

次の表では、データでの塩基の読み取り開始位置を後ろへずらす理由を説明します。

<table>
<thead>
<tr>
<th>状況</th>
<th>処理</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak 1 Location の直後の Raw Data のいずれかが明らかに使用不可である。</td>
<td>Raw Data を塩基の読み取り開始位置を後ろへずらすことができます。</td>
</tr>
<tr>
<td>または</td>
<td>その場合、Start Point の値は Peak 1 Location の値より大きくなり、Start Point の値を</td>
</tr>
<tr>
<td>Raw Data の一部のみを解析する必要がある場合。</td>
<td>Peak 1 Location の値より小さくすることはできません。</td>
</tr>
</tbody>
</table>

**Stop Point パラメータ**

Stop Point パラメータは、ベースコーリングに含まれる最後の Raw Data ポイントを指定します。デフォルトの Stop Point が使用された場合、ファイル内の最後のデータポイントが解析終了点となります。

**Stop Point 値の変更**

Sample Manager ワインドウで Stop Point パラメータを変更するには、「Stop Point」フィールドに新規の値を入力します。

この数値は、解析を停止するポイントの塩基番号ではなく、スキャン番号である必要があります。

**ベースコーリングの終了点を前倒しで設定する**

明らかに使用不可な Raw Data がサンプルの最後に存在する場合、またはサンプル内の Raw Data の一部のみを解析する必要がある場合、最後のデータポイントより前にベースコーリングを終了させることが可能です。
Stop Point を前倒して設定する

「Sample Manager」ウィンドウで早期の Stop Point を入力することで、Stop Point を前倒して設定します。

PCR 産物の Stop Point の設定

PCR 産物の解析を最適化するには、実際にデータ ピークがあらわれる部分のみを含む Stop Point でサンプルを再解析することが重要です。

Raw Data を調べて、最終ピークの後のスキャン番号を選択します。Basecaller ソフトウェアにより、データ範囲全体について Spacing とシグナル強度が計算されるため、正確な Stop Point を設定すると、より正確なデータ解析結果が得られます。

解析パラメータの変更

解析パラメータ（Basecaller ファイル、DyeSet/Primer ファイル）は、各サンプルファイルに関連付けられており、サンプルファイルの解析時に使用されます。

場合によっては、サンプルファイルのペース コーリング エラーが原因で不良な結果が生じることがあります。ベース コーリングに影響を及ぼす一般的なエラーの例は次のとおりです。

- 誤った Basecaller や DyeSet/Primer がベース コーリングに使用された
- ソフトウェアによって計算された Peak 1 Location や Start Point が誤っている
- 誤った Stop Point が選択されている
- 不良な Spacing
- クオリティの低いデータ
Sample Manager からの解析パラメータの変更

Basecaller、DyeSet/Primer、およびマトリックスファイルの変更

Basecaller ファイルまたは DyeSet/Primer ファイルを変更して、サンプルを再解析した場合、Basecaller により Peak 1 Location、Start Point、Stop Point、および Spacing が再計算されます。これらのパラメータに対してユーザが入力した値はすべて、再解析処理中に上書きされます。

Basecaller および DyeSet/Primer ファイル（またはそのいずれか）を変更するには

1. Sample Manager でサンプルを選択します。
2. Basecaller ドロップダウンリストで、新規の Basecaller を選択します（付録 C「Basecallers と DyeSet/Primer ファイル」を参照）。
3. 「DyeSet/Primer」ドロップダウンリストで、新規の DyeSet/Primer ファイルを選択します（付録 C「Basecallers と DyeSet/Primer ファイル」を参照）。

重要！ Basecaller ファイルと DyeSet/Primer ファイルのタイプが一致していることを確認してください。

4. 310 または 377 データのみ：データの解析に誤ったマトリックスが使用されていた場合、ドロップダウンリストから正しいファイルを選択します。
5. オプション：他の変更を行う必要がある場合、次的手順に進んでください。
6. 「BC」チェックボックスを選択します（必要に応じて「PP」や「P」チェックボックスも選択します）。
7. [Start Analysis] をクリックします。

サンプルの Analysis Settings を変更するには

1. Sample Manager で、変更するサンプルを選択します。
2. サンプルを選択し、「Raw」タブをクリックします。
3. ツールバーの「Zoom In Horizontal」および「Zoom In Vertical」ボタンを使用して、「Raw」データビューを拡大します。
4. 対象の設定を変更するには、5-19 ページの表 5-5 「Analysis Settings の変更方法」の説明に従ってください。

注：上記の値のいずれかを再計算するには、値を 0 にリセットしてください。次のサンプル解析時、ソフトウェアにより Peak 1 Location、Start Point、Stop Point、および Spacing が再計算されます。

5. 「BC」チェックボックスを選択します（必要に応じて「PP」や「P」チェックボックスも選択します）。
6. [Start Analysis] をクリックします。
### 表 5-5  Analysis Settings の変更方法

<table>
<thead>
<tr>
<th>変更する対象</th>
<th>手順</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacing</td>
<td>1. + マークカーソルを使用して 2 つの隣接ピークの上でスキャン番号を決定した後、大きい方から小さい方の数値を引いて Spacing を決定します。 &lt;br&gt;注： 最初の 100 塩基または最後の 200 塩基は使用しないでください。 &lt;br&gt;2. 値を記録します。 &lt;br&gt;3. Sample Manager で新規の値を入力します。 &lt;br&gt;注： ソフトウェアでスペーシング パラメータを再計算する場合、この値を 0 に設定してください。</td>
</tr>
<tr>
<td>Peak 1 Location</td>
<td>1. 最初の塩基ピークの Start Point (Peak 1 Location の値) を見つけます。ピークの Start Point をポイントし、マウスボタンを押してロケータ線を表示します。 &lt;br&gt;2. X 軸上のカーソル位置を記録します。 &lt;br&gt;3. Sample Manager で新規の値を入力します。 &lt;br&gt;次の図は、BigDye® Terminator v3 ケミストリーに用意されたサンプルの (スキャン番号 2048 における) 正しい Peak 1 Location 値を示しています。 &lt;br注： Peak 1 Location 値を変更すると、モビリティシフトの補正のために DyeSet/Primer ファイルが適用される方法に影響が生じます。</td>
</tr>
</tbody>
</table>
表 5-5 Analysis Settings の変更方法（続き）

<table>
<thead>
<tr>
<th>変更する対象</th>
<th>手順</th>
</tr>
</thead>
</table>
| **Start Point** | 1. カーソルを使用してピークの Start Point をポイントし、マウスボタンを押してロケータ線を表示します。  
  2. X 軸上のカーソル位置を記録します。  
  この数値が、解析に使用する新規の Start Point 値となります。  
  注: この値は Peak 1 Location には使用しないでください。  
  次の例は、Peak 1 Location と Start Point の違いを示しています。 |

「Raw」データビューで、カーソルが Peak 1 Location に置かれています。スキャン番号は 505 で、データを開始する位置を表しています。

「Raw」データビューで、カーソルが Start Point に置かれています。スキャン番号は 759 で、ベースコーリングを開始する位置を表しています。

| **Stop Point** | 1. カーソルを使用してピークの Start Point をポイントし、マウスボタンを押してロケータ線を表示します。  
  2. X 軸上のカーソル位置を記録します。  
  この数値が、解析に使用する新規の Stop Point 値となります。  
  注: PCR 産物の解析を最適化するには、実際にデータ ピークがあらわれる部分のみを含む Stop Point でサンプルを再解析することが重要です。 |

サンプルファイルの保存

サンプルファイル内のデータは、ベース コーリングおよびポスト プロセッシング（またはそのいずれか）の後、自動的には保存されません。4-15 ページの「サンプルファイルの保存」を参照してください。

注: サンプルファイルの解析時に .seq ファイルが作成されている場合、サンプルファイルを保存すると、サンプルファイルと .seq ファイルの両方が更新されます。
Analysis Protocol における解析バラメータの変更

サンプルごとの Analysis Protocol の変更

单一サンプルのプロトコールを変更するには

1. Sample Manager でサンプルを選択します。
2. 「Analysis」>「Analysis Protocol」を選択します。
3. 「Basecalling」タブを選択した後、ドロップダウンリストを使用して、Basecaller および DyeSet/Primer ファイル（またはそのいずれか）を選択します（付録 C「Basecallers と DyeSet/Primer ファイル」参照）。

重要！ Basecaller と Dye Set の種類が一致することを確認してください。

4. 310 または 377 データのみ：データの解析に誤ったマトリックスが使用されていた場合、ドロップダウンリストから正しいファイルを選択します。
5. 「OK」をクリックします。
6. 「BC」チェックボックスを選択します（必要に応じて「PP」や「P」チェックボックスも選択します）。
7. ［Start Analysis］をクリックします。
8. サンプルを保存します（4-15 ページの「サンプルファイルの保存」を参照）。

複数サンプルのプロトコールを変更するには

1. Sample Manager でサンプル列を選択します。
   - [Shift] キーを使用して、連続したサンプルを選択する
   - [Ctrl] キーを使用して、不連続のサンプルを選択する
2. 「Analysis」>「Analysis Protocol Manager」を選択します。
3. 編集するプロトコールを選択します。
4. 「File」ボタンをクリックした後、「Open」を選択するか、プロトコール名をダブルクリックします。
5. 「Basecalling」タブを選択した後、ドロップダウンリストを使用して、Basecaller および DyeSet/Primer ファイル（またはそのいずれか）を選択します（付録 C「Basecallers と DyeSet/Primer ファイル」参照）。

重要！ Basecaller と Dye Set の種類が一致することを確認してください。

6. 310 または 377 データのみ：データの解析に誤ったマトリックスが使用されていた場合、ドロップダウンリストから正しいファイルを選択します。
7. 「OK」をクリックしてプロトコールを保存し、「Sequence Analysis Protocol Editor」ダイアログボックスを閉じます。

注：バージョン番号は 1 ずつ増えていきます。

8. 次の操作のいずれかを行います。
   - 「Apply to Selected Samples」をクリックして、順 1 で選択したサンプルにプロトコールを適用します。
   - 「Apply to All Samples」をクリックして、Sample Manager 内のすべてのサンプルにプロトコールを適用します。
第 5 章 Sample Manager の使用

9. 「Done」をクリックして、「Analysis Protocol Manager」ダイアログ ボックスを閉じます。

10. 「BC」チェック ボックスを選択します（必要に応じて「PP」や「P」チェック ボックスも選択します）。

11. ▶ (Start Analysis) をクリックします。

12. サンプルを保存します（4-15 ページの「サンプルファイルの保存」を参照）。
詳細については、8-11 ページの「Analysis Protocol の作成と編集」を参照してください。
この章では、次の項目について説明します。

- Quality Value について ................................................................. 6-2
- Quality Value の表示 ................................................................. 6-4
- Quality Value による塩基の編集 .................................................. 6-7
Quality Value について

ABI PRISM® Sequencing Analysis ソフトウェア v5.0 に組み込まれている機能の 1 つとして、各塩基（単一の塩基、ミックスベースを含む）の Quality Value (QV) を割り当てる KB Basecaller があります。QV は、Basecaller 精度の塩基当たりの推定値です。

塩基当たりの Quality Value の解釈

塩基当たりの QV は、次の式に対応するスケールで表示されます。

\[ QV = -10 \log_{10}(Pe) \]

ここで、Pe はエラーの確率です。

KB Basecaller により、1 ～ 99 の QV が作成されます。1 では信頼度は低く、99 は信頼度が高くなります。1 ～ 99 の QV に対するベースコールエラーの確率については、6-3 ページの表 6-1 「Quality Value とエラーの確率」を参照してください。

- 標準的なクオリティの高い単一の塩基の場合、QV は 20 ～ 50 になる
- 標準的なクオリティの高いミックスベースの場合、QV は 10 ～ 50 になる
- QV 50 ～ 99 では、QV バーのサイズと色は同じ

QV を使用するには

QV を使用してデータ クオリティを閲覧するために、データとして許容可能な範囲の最低 QV を決定します。6-5 ページの「Quality Value 表示のカスタマイズ」を参照してください。

サンプル スコア

サンプル スコアは QV から作成されます。そのサンプルの Clear Range シーケンスにおける塩基の平均 Quality Value です。
表6-1 Quality Value とエラーの確率

<table>
<thead>
<tr>
<th>QV</th>
<th>Pe</th>
<th>QV</th>
<th>Pe</th>
<th>QV</th>
<th>Pe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79%</td>
<td>21</td>
<td>0.79%</td>
<td>41</td>
<td>0.0079%</td>
</tr>
<tr>
<td>2</td>
<td>63%</td>
<td>22</td>
<td>0.63%</td>
<td>42</td>
<td>0.0063%</td>
</tr>
<tr>
<td>3</td>
<td>50%</td>
<td>23</td>
<td>0.50%</td>
<td>43</td>
<td>0.0050%</td>
</tr>
<tr>
<td>4</td>
<td>39%</td>
<td>24</td>
<td>0.39%</td>
<td>44</td>
<td>0.0039%</td>
</tr>
<tr>
<td>5</td>
<td>31%</td>
<td>25</td>
<td>0.31%</td>
<td>45</td>
<td>0.0031%</td>
</tr>
<tr>
<td>6</td>
<td>25%</td>
<td>26</td>
<td>0.25%</td>
<td>46</td>
<td>0.0025%</td>
</tr>
<tr>
<td>7</td>
<td>20%</td>
<td>27</td>
<td>0.20%</td>
<td>47</td>
<td>0.0020%</td>
</tr>
<tr>
<td>8</td>
<td>15%</td>
<td>28</td>
<td>0.15%</td>
<td>48</td>
<td>0.0015%</td>
</tr>
<tr>
<td>9</td>
<td>12%</td>
<td>29</td>
<td>0.12%</td>
<td>49</td>
<td>0.0012%</td>
</tr>
<tr>
<td>10*</td>
<td>10%</td>
<td>30*</td>
<td>0.10%</td>
<td>50*</td>
<td>0.0010%</td>
</tr>
<tr>
<td>11</td>
<td>7.9%</td>
<td>31</td>
<td>0.079%</td>
<td>60</td>
<td>0.0001%</td>
</tr>
<tr>
<td>12</td>
<td>6.3%</td>
<td>32</td>
<td>0.063%</td>
<td>70</td>
<td>0.00001%</td>
</tr>
<tr>
<td>13*</td>
<td>5.0%</td>
<td>33</td>
<td>0.050%</td>
<td>80</td>
<td>0.000001%</td>
</tr>
<tr>
<td>14*</td>
<td>4.0%</td>
<td>34</td>
<td>0.040%</td>
<td>90</td>
<td>0.0000001%</td>
</tr>
<tr>
<td>15*</td>
<td>3.2%</td>
<td>35</td>
<td>0.320%</td>
<td>99</td>
<td>0.00000012%</td>
</tr>
<tr>
<td>16</td>
<td>2.5%</td>
<td>36</td>
<td>0.025%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17*</td>
<td>2.0%</td>
<td>37</td>
<td>0.020%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1.6%</td>
<td>38</td>
<td>0.016%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1.3%</td>
<td>39</td>
<td>0.013%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20*</td>
<td>1.0%</td>
<td>40*</td>
<td>0.010%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Quality Value の標準的なカットオフ値
Quality Value の表示

重要！ KB Basecaller で解析されたサンプルのみに QV があります。

QV は、サンプル内の各塩基の上にバーとして表示されます。バーの高さと色がその値を示します。バーが高いほど、高い QV を表しています。値に関連付けられた色は、「Display Settings」で編集可能です。

図 6-1 解析済みデータと QV 値の例

ミックスベースデータの QV ミックスベースの読み取りでは、単一の塩基の読み取りよりも低い QV が生成されます。データ解析にミックスベースオプションを選択する際の詳細については、8-9 ページの「Mixed Bases」タブを参照してください。

Quality Value バーの表示

「Electropherogram」または「Sequence」ビューでサンプルを表示したときに QV バーが表示されない場合、次の手法のいずれかを実行します。

「Display Setting」機能を使用する

Quality Value のバーを表示するには

1. 「Analysis」＞「Display Settings」を選択するか、ボタンをクリックします。
2. 「Bases」タブを選択します。
3. 「Sample File Display」セクションで、「Show QV Bars」チェックボックスを選択します。
4. 「OK」をクリックします。
「Show Quality Values」機能を使用する

クオリティバーおよびQuality Valueを表示するには
1. 「View」＞「Show Quality Values」を選択するか、をクリックします。
2. 特定のバーの数値を表示するには、そのバーの上にカーソルを2秒間置きます。数値が自動的に表示されます。

Quality Value

表示のカスタマイズ

Quality Valueの高さの範囲や、QVに関連付けられた色を修正することができます。

QV表示を修正するには
1. 「Analysis」＞「Display Settings」を選択するか、をクリックします。
2. 「Sample File Display」セクションで、カラーバーのスライダをクリックし、希望する値まで左右にドラッグします。

これにより、Quality Valueの高さの制限が変更されます。

<table>
<thead>
<tr>
<th>QVバー</th>
<th>デフォルトの色と範囲</th>
<th>この範囲設定で識別されるデータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>低</td>
<td>赤 0 ～ 14</td>
<td>許容不可</td>
</tr>
<tr>
<td>中</td>
<td>黄 15 ～ 19</td>
<td>手作業による閲覧が必要</td>
</tr>
<tr>
<td>高</td>
<td>青 20以上</td>
<td>許容可能</td>
</tr>
</tbody>
</table>
3. QV カラー バーの色を変更するには
   a. 変更する QV の色をクリックします。「Select a color」ダイアログ ボックスが開きます。

   色をクリックして選択します。

   b. 「Swatches」タブで新規の色をクリックするか、「HSB」または「RGB」タブを使用して新規の色を定義します。
   c. 「OK」をクリックします。

4. 「OK」をクリックして「Display Settings」ダイアログ ボックスを閉じます。
### Quality Value による塩基の編集

#### QV による編集について
塩基を変更、削除、および挿入すると、QV の表示が影響を受けます。

<table>
<thead>
<tr>
<th>操作</th>
<th>影響</th>
</tr>
</thead>
<tbody>
<tr>
<td>塩基を変更する</td>
<td>新規の塩基が小文字で表示されます。QV は同じ値ですが、バーは新規の塩基には適用されないため、灰色のバーとして表示されます。</td>
</tr>
<tr>
<td>塩基を元に戻す</td>
<td>塩基が大文字で表示され、Quality Value バーの色は元に戻ります。</td>
</tr>
<tr>
<td>塩基を挿入する</td>
<td>挿入された塩基は小文字で表示され、QV を含みません。</td>
</tr>
<tr>
<td>塩基を削除する</td>
<td>その塩基の Quality Value は非表示になります。</td>
</tr>
<tr>
<td>削除された塩基を再挿入する</td>
<td>再挿入された塩基は小文字で表示され、QV を含みません。</td>
</tr>
</tbody>
</table>
この章では、次の項目について説明します。

アナリシス レポートについて .......................................................7-2
表示のカスタマイズ .................................................................7-7
アナリシス レポートの印刷とエクスポート ................................7-9
アナリシス レポートの表示 .......................................................7-6
第7章 アナリシス レポート

アナリシス レポートについて

アナリシス レポートには、データ解析の成功および失敗（またはそのいずれか）が表示されます。アナリシス レポートは、Sample Manager に追加されたサンプルすべてに対して作成できます。データが解析されている場合、レポートには、QV と LOR の要約、および個々のサンプル情報とエラーが表示されます。データが未解析の場合、レポートにはステータス情報が表示されます。レポートは、トラブルシューティングに役立ち、レポートを使用するとデータクオリティの評価を簡単に行うことができます。これは、タブ区切りファイルとしてエクスポートし、Microsoft® Excel ソフトウェアで開いて傾向の分析に使用することができます。

アナリシス レポートの表示

レポートを表示するには、「Analysis」 > 「Analysis Report」を選択するか、 をクリックします。Applied Biosystems では、解析の後、レポートを閲覧してから各サンプルファイルを確認することをお勧めします。

図 7-1 アナリシス レポートの例

「Analysis Report」ウィンドウの項目

「Analysis Report」ウィンドウの項目は、情報が4つの表に分かれています。

表 7-1 アナリシス レポートの項目

<table>
<thead>
<tr>
<th>表</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>レポート内の合計サンプル数（Sample Manager 内のサンプル数による）、QV を含むサンプル数、QV 範囲の定義を表示</td>
</tr>
<tr>
<td>Length of Read (LOR)</td>
<td>LOR 範囲と色の定義、各範囲内のサンプル数を表示</td>
</tr>
</tbody>
</table>
| Sample Details | サンプルの統計値を表示。各サンプルは Sample Manager 内の特定のサンプルにリンクされています。
部分的出力と失敗したサンプルは、「Errors」表内の特定のサンプルにリンクされています。 |
表 7-1 アナリシス レポートの項目（続き）

<table>
<thead>
<tr>
<th>表</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Errors</td>
<td>解析およびポストプロセッシング中に発生したエラーを表示。各サンプルは Sample Manager 内の特定のサンプルにリンクされています。</td>
</tr>
</tbody>
</table>

「Summary」表
レポートのこの部分では、レポート内のサンプル数と Quality Value の要約が表示されます。

Summary

<table>
<thead>
<tr>
<th>Sample Files</th>
<th>Sample Files with QV</th>
<th>Low QV</th>
<th>Med QV</th>
<th>High QV</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>&lt; 15</td>
<td>≥ 15 and &lt; 20</td>
<td>≥ 20</td>
</tr>
</tbody>
</table>

表 7-2 「Summary」表の項目

<table>
<thead>
<tr>
<th>カラム</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Files</td>
<td>レポート内の合計サンプル数。この数値は、Sample Manager 内のサンプル数によって決まります。</td>
</tr>
<tr>
<td>Sample Files with QV</td>
<td>KB Basecaller で解析された QV を含むサンプルの合計数</td>
</tr>
<tr>
<td>Low, Medium, または High QV</td>
<td>QV の高さの範囲</td>
</tr>
</tbody>
</table>

注：範囲は「Display Settings」で定義されています。詳細については、9-4 ページの「Sample File Display」セクション」を参照してください。

「Length of Read (LOR)」表
レポートのこの部分では、LOR の高さに関する情報の要約が表示されます。

LOR は、使用可能なクオリティの高いまたは高精度塩基の範囲で、Quality Value によって決定されます。LOR 情報は、アナリシス レポートを開いたときに計算されます。

注：LOR 情報は、KB Basecaller で解析されたサンプルに対してのみ表示されます。

Length of Read (LOR): Average QV of 20 bases ≥ 20

<table>
<thead>
<tr>
<th>Low LOR = 0-200</th>
<th>Medium LOR = 201-500</th>
<th>High LOR &gt; 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples with low LOR = 1</td>
<td>Samples with medium LOR = 0</td>
<td>Samples with high LOR = 2</td>
</tr>
</tbody>
</table>

表 7-3 「LOR」表の項目

<table>
<thead>
<tr>
<th>カラム</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low LOR</td>
<td>低 LOR 結果の範囲と色。デフォルトの色は赤です。</td>
</tr>
<tr>
<td>Medium LOR</td>
<td>中 LOR 結果の範囲と色。デフォルトの色は青です。</td>
</tr>
<tr>
<td>High LOR</td>
<td>高 LOR 結果の範囲と色。デフォルトの色は黄です。</td>
</tr>
<tr>
<td>Samples with Low LOR</td>
<td>低 LOR 範囲内のサンプル数</td>
</tr>
<tr>
<td>Samples with Medium LOR</td>
<td>中 LOR 範囲内のサンプル数</td>
</tr>
<tr>
<td>Samples with High LOR</td>
<td>高 LOR 範囲内のサンプル数</td>
</tr>
</tbody>
</table>
第7章 アナリシス レポート

*LOR の範囲と色は「Display Settings」で定義されています。詳細については、9-4 ページの「「Sample File Display」セクション」を参照してください。

「Sample Details」表

レポートのこの部分には、各サンプルのリストと、それに関連した解析情報が表示されます。

注：QV、サンプル スコア、LOR、シグナル/ノイズの情報は、KB Basecaller で解析されたサンプルに対してのみ表示されます。

この表で、「N/A」は未解析、またはこのセッションでは解析不可であることを示しています。

<table>
<thead>
<tr>
<th>Sample Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample File Name</td>
</tr>
<tr>
<td>Seq_0</td>
</tr>
<tr>
<td>Seq_0</td>
</tr>
<tr>
<td>s_010</td>
</tr>
<tr>
<td>040301</td>
</tr>
</tbody>
</table>

Legend: Complete □ Partial Output △ No Output ●

「Errors」表内のサンプルにリンクされています。

Sample Manager 内のサンプルにリンクされています。

表 7-4 「Sample Details」表の項目

<table>
<thead>
<tr>
<th>カラム</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample File Name</td>
<td>サンプルの名前。ファイルは、Sample Manager 内の特定のサンプルにリンクされています。</td>
</tr>
</tbody>
</table>
| BC Status | ベース コーリングに対する成功、クオリティの低いデータ、失敗、未解析を表示
- 緑のアイコン = 成功
- 黄のアイコン = クオリティの低いデータ、部分的な出力（KB Basecaller で解析されたデータのみ）
- 赤のアイコン = 失敗
- N/A = 未解析またはこのセッションでは解析不可
赤または黄のアイコンがあるサンプルは、「Errors」表内の特定サンプルにハイパーリンクされています。 |
| PP Status | ポスト プロセシングの成功、失敗、未解析を表示。
- 緑のアイコン = 成功
- 黄のアイコン = 失敗
- N/A = ポスト プロセシングされていないか、このセッションではポスト プロセシング不可
赤のアイコンがあるサンプルは、「Errors」表内の特定サンプルにハイパーリンクされています。 |
<p>| Well | サンプルが含まれていたプレートのウェル番号 |
| Cap # | サンプルがランされたキャピラリの番号 |</p>
<table>
<thead>
<tr>
<th>カラム</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak 1</td>
<td>サンプルから取得されたファイル内の最初のデータポイントを表すスキャン番号（プライマー ピークは含まない)</td>
</tr>
<tr>
<td>Base Spacing</td>
<td>サンプルに対して計算された Spacing を表す値。Spacing は、あるピークの頂点から次のピークの頂点までのスキャンポイント数によって定義されます。</td>
</tr>
<tr>
<td>Bases with Low, Medium, or High QVs</td>
<td>QV が低い、中程度、または高い範囲にある塩基の数</td>
</tr>
<tr>
<td>Sample Score</td>
<td>そのサンプルの Clear Range シーケンスにおける塩基の平均 Quality Value</td>
</tr>
<tr>
<td>LOR</td>
<td>使用可能な高品質または高精度塩基の範囲で、Quality Value によって決定されます。</td>
</tr>
<tr>
<td>A, G, C or T S/N</td>
<td>値は、サンプル内の「A」、「G」、「C」、または「T」塩基すべての平均シグナル / 平均ノイズを表しています。</td>
</tr>
<tr>
<td>Avg S/N</td>
<td>サンプル内の塩基すべての平均シグナル / ノイズ値を表す値</td>
</tr>
</tbody>
</table>

「Errors」表
レポートで、解析およびポストプロセッシング中に発生したエラーを表示する部分です。失敗した各サンプルには、Sample Manager 内の特定のサンプルヘリンクされています。

<table>
<thead>
<tr>
<th>Sample File Name</th>
<th>Step Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1_A01_01</td>
<td>BaseCalling</td>
<td>Basecalling Failed, WARNING: F_ERROR -10028: ABIIF access failure - too</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fast. Incomplete Results presented from previous stage</td>
</tr>
<tr>
<td>84100b_i_A11_095</td>
<td>BaseCalling</td>
<td>Bad Data. Error number = 303335</td>
</tr>
</tbody>
</table>

Sample Manager 内のサンプルにリンクされています。

表 7-5 「Errors」表の項目

<table>
<thead>
<tr>
<th>カラム</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample File Name</td>
<td>サンプルの名前</td>
</tr>
<tr>
<td>Step Name</td>
<td>ベース コーリングまたはポストプロセッシング中にエラーが発生した場所</td>
</tr>
<tr>
<td>Description</td>
<td>エラーの説明</td>
</tr>
</tbody>
</table>
### アナリシス レポートの表示

重要！ レポートが無効になる操作（サンプルの追加など）を行った場合、レポート表示が強制終了します。

アナリシス レポートを表示するには

1. 「Analysis」 > 「Analysis Report」を選択するか、 をクリックします。
   アナリシス レポートが開きます。
2. レポート内のデータを表示するには、必要に応じて次の手順を実行します。
   a. スクロール バーを使用して、すべてのレポートを表示します。
   b. ハイパーリンクを使用して、アナリシス レポートから Sample Manager に移動します。

注：ハイパーリンクは、アナリシス レポートから Sample Manager への移動のみが可能で、逆の移動はできません。

3. をクリックしてアナリシス レポートに戻ります。

---

第7章 アナリシス レポート

Basecaller と DyeSet/Primer ファイルの不一致によるエラー

- KB DyeSet/Primer ファイルと ABI Basecaller を解析に選択した場合、ベース コーリングは成功（緑の BC ボックス）ですが、解析されたデータは使用できません。
- DT DyeSet/Primer ファイルと KB Basecaller を解析に選択した場合、ベース コーリングは失敗します。次のエラー メッセージが「Errors」表に表示されます。

<table>
<thead>
<tr>
<th>File Name</th>
<th>Step Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>PostProcessing</td>
<td>Incomplete Results presented from previous stage</td>
</tr>
</tbody>
</table>
表示のカスタマイズ

フォントとテキストのカスタマイズ

セル内のフォントとテキストをカスタマイズするには、表示をカスタマイズするには、「Report Manager」ウィンドウの左下隅にある「Report Settings」セクションを使用します。

1. 「Fit Columns to Window」チェックボックスを選択/選択解除します。デフォルトではオフになっています。

2. ドロップダウンリストでフォントの種類とサイズを選択します。デフォルトのフォントとサイズは「Arial 12」です。
3. 「Wrap Text」または「Unwrap Text」をクリックします。

データビューのカスタマイズ
レポートに表示された情報をカスタマイズするには
1. 表の任意のカラムヘッディングを右クリックします。表内のカラムヘッディングのリストが表示されます。

2. カラムを非表示にするには、カラムヘッディングを選択解除します。
3. 手順1と2を繰り返して、他のヘッディングも選択解除します。
4. カラムを再表示するには、任意のカラムヘッティングで右クリックした後、カラムヘッティングを選択します。
5. 「Sample Details」または「Errors」表のカラムのデータをAからZ、またはZからAにソートするには、カラムヘッティングでダブルクリックします。再度ダブルクリックすると、逆方向にソートされます。
6. 任意の表でカラムの順序を変更するには、[Ctrl]キーを押しながらカラムヘッティングを新しい位置までドラッグし、解放します。
アナリシス レポートの印刷とエクスポート

アナリシス レポートの印刷

アナリシス レポートを印刷するには

1. アナリシス レポートを開きます。

2. 「File」＞「Print」を選択するか、印刷ボタンをクリックします。「Print」ダイアログ 窓が開きます。

3. 「General」タブで、次の手順を実行します。

   ![Print window](image)

   a. 「Print Service」セクションで、「Name」ドロップダウン リストからプリンタを選択します。
   b. すべてのページ（All）の印刷または選択したページ（Pages）の印刷を選択します。
   c. 必要に応じて、部数を変更します。

4. 「Page Setup」タブを選択し、次の手順を実行します。

   ![Page Setup window](image)

   a. 「Media」セクションで、ドロップダウン リストから用紙と給紙方法を選択します。
   b. 「Orientation」セクションで、印刷の向きを選択します。
   c. 「Margins」セクションで、使用するプリンタに応じて余白を変更します。
5. 「Appearance」タブを選択し、次の手順を実行します。

![Image]

a. 「Color Appearance」セクションで、ラジオボタンを使用して Monochrome または Color オプションを選択します。
b. 「Quality」セクションで、ラジオボタンを使用して印刷品質を選択します。
c. 「Sides」セクションで、ラジオボタンを使用して印刷面を選択します。

注：両面プリンタを使用していない場合、オプションは選択できず、「One Side」がデフォルト設定になります。

d. 「Job Attributes」セクションで、ジョブ名とユーザ名（またはそのいずれか）を必要に応じて変更します。

6. 「Print」をクリックします。

レポートが印刷されます。

アリシス レポートのエクスポート

アリシス レポートは、タブ区切りファイルとしてエクスポートできます。これは、Microsoft®Excel ソフトウェア（またはこのファイル形式が読取り可能な任意のアプリケーション）で開いて傾向の分析に使用できます。

アリシス レポートをエクスポートするには

1. アリシス レポートを開きます。
2. 「File」>「Export Report」を選択します。
3. 「Export Analysis Report」ダイアログボックスで、次の手順を実行します。
a. ファイルを保存するフォルダの場所を設定します。
b. ファイル名を入力します。
c. 「Export」をクリックします。
ファイルがタブ区切り形式でエクスポートされます。

図7-4 Excel ソフトウェアにおけるアナリシス レポートの例
第7章 アナリシス レポート
この章では、次の項目について説明します。

Analysis Protocolについて ................................. 8-2
Analysis Protocolの項目 ................................. 8-3
Analysis Protocolの作成と編集 ........................... 8-11
Analysis Protocolのデータへの適用 ........................ 8-15
Data CollectionソフトウェアとSequencing Analysisソフトウェア間のAnalysis Protocolの共有 ................................. 8-16
Analysis Defaults ........................................... 8-17
Analysis Defaultsの編集および適用 ........................ 8-19
Options ....................................................... 8-21
シーケンスファイル形式の変更方法 .......................... 8-26
データプロセッシングパラメータの変更方法 ....................... 8-26
解析パラメータの変更方法 .................................. 8-27
Analysis Protocol設定の変更方法 ........................... 8-28
Analysis Protocolについて

Analysis Protocol は、ABI PRISM® Sequencing Analysis ソフトウェア v5.0 に組み込まれています。この設定により、旧バージョンの Sequencing Analysis ソフトウェアで使用されたプリファレンスはすべて置き換えられます。Analysis Protocol には、ベースコーリングとポストプロセッシングに必要なすべての設定が含まれています。プロトコールはサンプルファイルに保存されます。

Analysis Protocol に含まれている設定は次のとおりです。
- プロトコール名
- ベースコーリングおよびファイル形式の設定
- ミックスベースの設定
- Clear Range の設定

Analysis Protocol の種類

Analysis Protocol には 2 つの種類、サンプルごととマスタがあります。

サンプルごとの Analysis Protocol

サンプルごとのプロトコールは、サンプルファイル内に保存されたプロトコールです。これは編集が可能です。変更は、選択したサンプルのプロトコールのみに影響します。このプロトコールを他のサンプルに適用することはできません。

Master Analysis Protocol

マスタプロトコールは、どのサンプルにも関連付けられていません。サンプルにプロトコールが含まれない場合、8-15 ページの「Analysis Protocol のデータへの適用」で説明されている「Apply to Selected Samples」機能または Analysis Defaults を使用して、サンプルにコピーされ、割り当てられます。

デフォルトの Master Analysis Protocol は次のとおりです。
- 3730BDTv3-KB-DeNovo_v5.1
- 3100POP6_BDTv3-KB-DeNovo_v5.1
- 310POP6_BDTv3-KB-DeNovo_v5.1

Analysis Protocol Manager

Analysis Protocol Manager は、Master Analysis Protocol の作成、修正、適用、および削除を管理するためのインタフェースです。
Analysis Protocol の項目

Analysis Protocol は、Analysis Protocol Manager の「Sequence Analysis Protocol Editor」ウィンドウ内で定義されており、表 8-1 に示す 4 つのタブがあります。

注：Analysis Protocol の作成と編集の詳細については、8-11 ページの「Analysis Protocol の作成と編集」を参照してください。

表 8-1 Analysis Protocol のタブ

<table>
<thead>
<tr>
<th>タブ</th>
<th>このビュー内で可能な操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Analysis Protocol の名前、説明、使用するシーケンス ファイル形式を設定する</td>
</tr>
<tr>
<td>Basecalling</td>
<td>Basecaller、DyeSet/Primer ファイル、マトリックス、解析終了ポイントを選択する</td>
</tr>
<tr>
<td>Mixed Bases</td>
<td>ミックスベース検出を使用するかどうかを設定する。使用する場合、最大のピーク高と2番目のピーク高との差をパーセンテージで設定します。</td>
</tr>
<tr>
<td>Clear Range</td>
<td>塩基の位置、Quality Value、あるいは不明確な塩基 (N) の数に基づいて、Clear Range を指定する</td>
</tr>
</tbody>
</table>
表8-2 3730BDTv3-KB-DeNovo_v5.1 プロトコールの設定

<table>
<thead>
<tr>
<th>タブ</th>
<th>デフォルト設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Name: 3730BDTv3-KB-DeNovo_v5.1</td>
</tr>
<tr>
<td></td>
<td>Sequence File Formats: <strong>Write Phred (phd.1) File</strong></td>
</tr>
<tr>
<td>Basecalling</td>
<td>Basecaller: <strong>KB.bcp</strong></td>
</tr>
<tr>
<td></td>
<td>DyeSet/Primer: <strong>KB_3730_POP7_BDTv3.mob</strong></td>
</tr>
<tr>
<td></td>
<td>Matrix File: <strong>None</strong></td>
</tr>
<tr>
<td></td>
<td>Ending Base オプション: すべて選択解除</td>
</tr>
<tr>
<td></td>
<td>Processed Data: <strong>True Profile</strong></td>
</tr>
<tr>
<td></td>
<td>Quality Threshold: <strong>Do not assign Ns to Basecalls</strong></td>
</tr>
<tr>
<td>Mixed Bases</td>
<td>Use Mixed Base Identification: 選択解除</td>
</tr>
<tr>
<td>Clear Range</td>
<td>Use clear range minimum and maximum: 選択解除</td>
</tr>
<tr>
<td></td>
<td>Use quality values: 選択</td>
</tr>
<tr>
<td></td>
<td>Use identification of N calls: 選択解除</td>
</tr>
</tbody>
</table>

表8-3 3100POP6_BDTv3-KB-DeNovo_v5.1 プロトコールの設定

<table>
<thead>
<tr>
<th>タブ</th>
<th>デフォルト設定</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Name: 3100POP6_BDTv3-KB-DeNovo_v5.1</td>
</tr>
<tr>
<td></td>
<td>Sequence File Formats: <strong>Write Phred (phd.1) File</strong></td>
</tr>
<tr>
<td>Basecalling</td>
<td>Basecaller: <strong>KB.bcp</strong></td>
</tr>
<tr>
<td></td>
<td>DyeSet/Primer: <strong>KB_3100_POP6_BDTv3.mob</strong></td>
</tr>
<tr>
<td></td>
<td>Matrix File: <strong>None</strong></td>
</tr>
<tr>
<td></td>
<td>Ending Base オプション: すべて選択解除</td>
</tr>
<tr>
<td></td>
<td>Processed Data: <strong>True Profile</strong></td>
</tr>
<tr>
<td></td>
<td>Quality Threshold: <strong>Do not assign Ns to Basecalls</strong></td>
</tr>
<tr>
<td>Mixed Bases</td>
<td>Use Mixed Base Identification: 選択解除</td>
</tr>
<tr>
<td>Clear Range</td>
<td>Use clear range minimum and maximum: 選択解除</td>
</tr>
<tr>
<td></td>
<td>Use quality values: 選択</td>
</tr>
<tr>
<td></td>
<td>Use identification of N calls: 選択解除</td>
</tr>
</tbody>
</table>
表8-4 310POP6_BDTv3-KB-DeNovo_v5.1 プロトコルの設定

<table>
<thead>
<tr>
<th>タブ</th>
<th>デフォルト設定</th>
</tr>
</thead>
</table>
| General   | Name: 310POP6_BDTv3-KB-DeNovo_v5.1  
Sequence File Formats: Write Phred (phd.1) File |
| Basecalling | Basecaller: KB.bcp  
DyeSet/Primer: KB_310_POP6_BDTv3_50Std.mob  
Matrix File: TestMatrix.mtx  
Ending Base オプション: すべて選択解除  
Processed Data: True Profile  
Quality Threshold: Do not assign Ns to Basecalls |
| Mixed Bases | Use Mixed Base Identification: 選択解除 |
| Clear Range | Use clear range minimum and maximum: 選択解除  
Use quality values: 選択  
Use identification of N calls: 選択解除 |

「General」タブ

表8-5 「General」タブの項目

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>「Analysis Protocol Description」セクション</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Analysis Protocol の名前</td>
</tr>
<tr>
<td>Description</td>
<td>プロトコールの説明</td>
</tr>
</tbody>
</table>
表 8-5 「General」タブの項目（続き）

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>「Sequence File Formats」セクション</td>
<td></td>
</tr>
</tbody>
</table>
| 「Write .Seq File」チェックボックス | 選択されている場合、.seq ファイルが作成され、シーケンスをテキストファイルとして印刷したり、ファイルを他のソフトウェアで使用できます。  
- Applied Biosystems ソフトウェアでは、ABI 形式を使用します。  
- 他のソフトウェアでは、FASTA 形式を使用します。 |
| Write Standard Chromatogram Format file (.scf) | このオプションを選択した場合、そのソフトウェアで使用できる.scf ファイルが生成されます。ただし、ファイル名には拡張子 .scf は付いていません。 |
| Write Phred (.phd.1) File | このオプションを選択し、かつ KB Basecaller を使用する場合、そのソフトウェアで使用できる.phd.1 ファイルが生成されます。 |

「Basecalling」タブ

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>「Basecalling」セクション</td>
<td></td>
</tr>
</tbody>
</table>
| 「Basecaller」ドロップダウンリスト | Basecaller を選択するときに使用します。これらのファイルには、シンプルファイル内の塩基を読み取るために使用されるアルゴリズムが含まれています。  
- KB Basecaller – ミックスベースまたは単一の塩基、および Quality Value を計算するアルゴリズム  
- ABI Basecaller – ABI PRISM Sequencing Analysis ソフトウェアの旧バージョンで使用されているアルゴリズム |
|  | 装置ごとにソートされた Basecaller のリストについては、付録 C を参照してください。 |
表 8-6 「Basecalling」タブの項目（続き）

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>「DyeSet/Primer」ドロップダウンリスト</td>
<td>DyeSet/Primer ファイルを選択するときに使用します。これらのファイルには、使用されたキメストリの種類によるモビリティシフトや色コードの変更を補正するために使用されるアルゴリズムが含まれています。装置とBasecaller ごとにソートされた DyeSet/Primer ファイルのリストについては、付録 C を参照してください。重要！ DyeSet/Primer ファイルのタイプは、Basecaller の種類と一致している必要があります。- KB DyeSet/Primer ファイルと ABI Basecaller を解析に選択した場合、ベースコーリングは成功（緑の BC ボックス）ですが、解析済みデータは使用できません。- DT DyeSet/Primer ファイルと KB Basecaller を解析に選択した場合、ベースコーリングは失敗します。次のエラーメッセージが「Errors」表に表示されます。</td>
</tr>
<tr>
<td>File Name</td>
<td>Step Name</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>.01</td>
<td>BaseCalling</td>
</tr>
<tr>
<td>.01</td>
<td>PostProcessing</td>
</tr>
</tbody>
</table>

「Matrix File」ドロップダウンリスト | 310 または 377 データのマトリクスファイルを選択するときに使用します。データが 3100、3100-Avant、3700 または 3730/3730x/ 装置で生成されている場合、カラムには「None」が表示されます。マトリクスカラムは：- ベースコーリング中に、マトリクスがデータに適用されるため、310 および 377 データに使用されます。- データ取り込み中にマトリクスがデータに適用されるため、3100/3100-Avant、3700、または 3730/3730x/ データには使用されません。
表 8-6 「Basecalling」タブの項目（続き）

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processed Data</td>
<td>解析データの表示スケールは一定でデータを表示するので、最も強いシグナル領域の平均ピーク高にほぼ一致するようにスケールを固定します。ピークのプロファイルは Raw Data に近似します。</td>
</tr>
<tr>
<td>True Profile</td>
<td>解析データの表示スケールは部分的に調整しデータを表示するので、部分領域の平均ピーク高にほぼ一致するようにスケールを固定します。ピークのプロファイルはデータの中間領域では（約 40 bases 以上）均一になります。注：このオプションは、KB Basecallerで解析されたデータのみ適用されます。ABI Basecaller を使用する場合、プロファイルのオプションは True Profileのみとなります。</td>
</tr>
</tbody>
</table>

「Ending Base」セクション

| 「At PCR Stop」チェックボックス | PCR フラグメントの最後に解析終了ポイントを設定します。ソフトウェアは、ダイプライマーで生成されたシーケンスを検索した後、短い PCR フラグメント終了特徴である大きなピークを検出することで、終了ポイントを決定します。終了ポイントのピークの大きさが十分ではない場合、ソフトウェアは PCR 終了ポイントを認識できない可能性があります。注：PCR データの後にノイズがある場合、そのノイズはシグナルと見なされ、終了ポイントがノイズの後にあるものと誤って計算されます。 |
| 「After ____ Ns in ____ bases」チェックボックス | 特定数の塩基内で特定数の N が発生した後（たとえば、10 塩基の範囲内で 5 個の N が検出された後）に、解析終了ポイントを設定します。 |
表 8-6 「Basecalling」タブの項目（続き）

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
</table>
| 「After __ Ns」チェック ボックス | 特定数の N が発生した後（たとえば、20 個の N が検出された後）に解析終了ポイントを設定します。
| 「After __ Bases」チェック ボックス | 特定数の塩基の後（たとえば、800 塩基が検出された後）に解析終了ポイントを設定します。

Quality Threshold

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not assign N's to Basecalls</td>
<td>KB Basecaller を使用する場合、すべての位置に対して塩基と QV を割り当てます。</td>
</tr>
<tr>
<td>Assign N's to Basecalls with QV&lt;</td>
<td>KB Basecaller を使用する場合、QV が設定値未満の塩基に N を割り当てます。QV が表示されます。</td>
</tr>
</tbody>
</table>

「Mixed Bases」タブ

ミックス ベースは、1 つの塩基の位置に 2 つの塩基が含まれることを意味します。これらの塩基には、適切な IUB コードが割り当てられます。

注：このオプションは、KB Basecaller でのみ使用します。

表 8-7 「Mixed Bases Settings」セクションの項目

<table>
<thead>
<tr>
<th>項目</th>
<th>説明</th>
</tr>
</thead>
</table>
| Use Mixed Base Identification | • ミックス ベースデータの場合、「Mixed Bases」オプションを選択します。KB Basecaller は、A、C、G、T，または IUB コードを各塩基に割り当てます。
• 単一の塩基データの場合、「Mixed Bases」オプションを選択解除します。KB Basecaller は、A、C、G、または T を各塩基に割り当てます。 |
| Call IUB if 2nd highest peak is ≥ % of the highest peak | 価を入力するか、グラフィック上のスライダ線を上下に移動することで、% 制限を設定します。デフォルトは 25 % です。 |
「Clear Range」タブ

Clear Range は、5' と 3' の両末端でクオリティの低いまたはエラーが発生しづらいシークエンスを除外した後に残るシークエンスの領域です。

表 8-8 「Clear Range Methods」セクションの項目

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>「Use clear range minimum and maximum」チェック ボックス</td>
<td>選択されている場合、Clear Range は、開始塩基番号および最後に定義された塩基、または 3' 末端からの x 塩基数によって定義されます。</td>
</tr>
<tr>
<td>「Use quality values」チェック ボックス</td>
<td>選択されている場合、範囲は、Quality Value が有効であるときに QV によって定義されます。これにより、特定数の低品質塩基が許容されているウィンドウが設定されます。</td>
</tr>
<tr>
<td>「Use identification of N calls」チェック ボックス</td>
<td>選択されている場合、範囲は、特定数の N によって定義された最初の塩基から最後の塩基までのものです。これにより、特定数のあいまいな塩基読み取り（N）が許容されているウィンドウが設定されます。</td>
</tr>
</tbody>
</table>

注：複数のメソッドを同時に使用することができます。Clear Range メソッドは順次適用されます。最小の Clear Range が結果となります。
Analysis Protocol の作成と編集

Master Analysis Protocol の作成

Master Analysis Protocol を作成するには

1. 「Analysis」→「Analysis Protocol Manager」を選択します。「Analysis Protocol Manager」が開きます。

2. 「New」をクリックします。

3. 「General」タブで、次の手順を実行します。

   a. 新規プロトコルに対する固有の名前と説明を入力します。
   b. 適切なシーケンスファイルの形式を選択します。
4. 「Basecalling」タブを選択し、次の手順を実行します。

![Sequence Analysis Protocol Editor](image1)

a. ドラップダウンリストから適切な Basecaller と DyeSet/Primer ファイルを選択します。付録 C 「Basecallers と DyeSet/Primer ファイル」を参照してください。

b. 310 および 377 データについては、ドラップダウンリストからマトリックスを選択します。

c. 「Processed Data」ペインで、「True Profile」または「Flat Profile」を選択します（KB Basecaller の場合のみ）。

d. 必要に応じて、データ解析の終了ポイントを 1 つまたは複数選択します。

e. 「Threshold Quality」オプションを選択します（KB Basecaller の場合のみ）。

5. 「Mixed Bases」タブを選択し、次の手順を実行します。

![Sequence Analysis Protocol Editor](image2)

a. ミックスベース データの場合、「Use Mixed Base Identification」チェック ボックスを選択します。

b. デフォルトの検出レベルである 25 % を使用するか、新規の値を入力または % ラインを上下にドラッグして、値を変更します。
Applying Analysis Protocol の作成と編集

6. 「Clear Range」タブを選択し、次的手順を実行します。

7. 「OK」をクリックしてプロトコールを保存し、「Sequence Analysis Protocol Editor」ダイアログボックスを閉じます。

8. 「Done」をクリックして「Analysis Protocol Manager」を閉じます。

Analysis Protocol をサンプルに適用するには、8-15 ページを参照してください。

Master Analysis Protocol の編集

1. 「Analysis」> 「Analysis Protocol Manager」を選択します。「Analysis Protocol Manager」が開きます。

2. 「Analysis Protocol」カラムで、編集するプロトコールを選択します。

3. 「Edit」をクリックするか、プロトコール名をダブルクリックします。

4. 必要に応じて、「General」、「Basecalling」、「Mixed Bases」、「Clear Range」タブで変更を行います。
第8章 Analysis Protocol、オプション、および Analysis Defaults

5. 「OK」をクリックしてプロトコールを保存し、「Sequence Analysis Protocol Editor」ダイアログ ボックスを閉じます。

注：バージョン番号は、「OK」を押すたびに1ずつ増えていきます。

6. 「Done」をクリックして、「Analysis Protocol Manager」ダイアログ ボックスを閉じます。Analysis Protocol をサンプルに適用するには、8-15 ページを参照してください。

サンプルごとの Analysis Protocol の編集

サンプルごとの Analysis Protocol を編集するには

1. Sample Manager にサンプルを追加します（3-9 ページの「Sample Manager へのサンプル ファイルの追加」を参照）。  
2. Sample Manager でサンプルを選択します。
3. 「Analysis」＞「Analysis Protocol」を選択します。
4. オプション: 必要に応じて、「General」、「Basecalling」、「Mixed Bases」、「Clear Range」の各タブで適切に変更を加えます。
5. 「OK」をクリックします。
6. サンプルを再解析します。
7. 変更を保存するには、サンプルファイルを保存してください（4-15 ページの「サンプルファイルの保存」を参照）。

注：変更は、選択したサンプルのプロトコールのみに影響します。
Analysis Protocol のデータへの適用

注：マスタ プロトコールをサンプルに適用した後、プロトコール設定を有効にするために、サンプルを再解析する必要があります。

複数サンプルへのマスタ プロトコールの適用

Analysis Protocol Manager 機能を使用して、複数サンプルの Analysis Protocol を変更します。

マスタ プロトコールを複数サンプルに適用するには

1. Sample Manager にサンプルを追加します（3-9 ページの「Sample Manager へのサンプルファイルの追加」を参照）。

2. Sample Manager でサンプルを選択します。
   • [Shift] キーを使用して、連続したサンプルを選択します。
   • [Ctrl] キーを使用して、不連続のサンプルを選択します。

3. 「Analysis」 > 「Analysis Protocol Manager」を選択します。「Analysis Protocol Manager」が開きます。

4. 適用する Analysis Protocol を選択し、次の手順のいずれかを実行します。
   • 「Apply to Selected Samples」をクリックして、手順 2 で選択したサンプルファイルプロトコールを使用する
   • 「Apply to All Samples」をクリックして、Sample Manager 内のすべてのサンプルファイルプロトコールを使用する

5. 「Done」をクリックして「Analysis Protocol Manager」を閉じます。

6. サンプルを再解析します。

7. 変更を保存するには、サンプルファイルを保存してください（4-15 ページの「サンプルファイルの保存」を参照）。

オリジナル Analysis Settings のサンプルへの適用

「Apply Pre-Analysis Settings」機能を使用して、元の Analysis Settings をサンプルに適用します。

解析前の設定を適用するには

1. Sample Manager にサンプルを追加します。

2. Sample Manager でサンプルを選択します。
   • [Shift] キーを使用して、連続したサンプルを選択します。
   • [Ctrl] キーを使用して、不連続のサンプルを選択します。

3. 「Analysis」 > 「Apply Pre-Analysis Settings」を選択します。

4. サンプルを再解析します。

5. 変更を保存するには、サンプルファイルを保存してください（4-15 ページの「サンプルファイルの保存」を参照）。
Data Collection ソフトウェアと Sequencing Analysis
ソフトウェア間の Analysis Protocol の共有

重要！Applied Biosystems 3730/3730xl DNA Analyzer または ABI PRISM® 3100/3100-Avant ジェネティック アナライザに接続されているコンピュータ上に Sequencing Analysis ソフトウェア v5.1 を正しくインストールするには、Data Collection ソフトウェアのバージョン 2.0 が実行中である必要があります。ソフトウェアの正しいインストール方法の詳細については、第1章「Sequencing Analysis ソフトウェアのインストール」を参照してください。

Master Analysis Protocol は、3730/3730xl Data Collection ソフトウェア v2.0 および3100/3100-Avant Data Collection ソフトウェア v2.0 でも作成できます。

次の表に、ファイルを共有するための条件を定義します。「MAP」という用語は、Master Analysis Protocol を意味しています。

<table>
<thead>
<tr>
<th>条件</th>
<th>結果</th>
<th>修正方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Collection を開いているときに Sequencing Analysis ソフトウェアがインストールされた（正しいインストール）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MAP が Sequencing Analysis で作成されている</td>
<td>MAP が両方のアプリケーションに登録されており、Data Collection ソフトウェアで使用可能</td>
<td>—</td>
</tr>
<tr>
<td>• Data Collection を開いている</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• MAP が Data Collection で作成されている</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Sequencing Analysis が開いている</td>
<td>MAP が両方のアプリケーションに登録されており、Sequencing Analysis ソフトウェアで使用可能</td>
<td>—</td>
</tr>
</tbody>
</table>

Data Collection を閉じているときに Sequencing Analysis ソフトウェアがインストールされた（不適切なインストール）

<table>
<thead>
<tr>
<th>条件</th>
<th>結果</th>
<th>修正方法</th>
</tr>
</thead>
</table>
| • MAP が Sequencing Analysis または Data Collection で作成されている | Sequencing Analysis は Data Service に登録されず、ソフトウェア間の通信は行われない | 1. Sequencing Analysis ソフトウェアをアンインストールします。
2. Data Collection ソフトウェアを開きます。
3. Sequencing Analysis ソフトウェアを再インストールします。
4. ソフトウェアを登録します。 |
| • 他のソフトウェアが開いているか閉じている | | |
### Analysis Defaults

サンプルファイルはSample Managerに追加されると、次にAnalysis Defaultsを通過します。Analysis Defaultsには、処理パラメータの設定（ベースコーリング、ポストプロセッシング、印刷）、ファイル形式の設定（.seq、.scf、.phd.1）およびAnalysis Protocolが含まれています。含まれていない場合のみ、Analysis Protocolはサンプルに割り当てられます。

#### Analysis Defaultsの項目

「Analysis Defaults」ウィンドウの例（下図）には、「Add Samples Settings」および「Sequence File Formats」セクションがあります。

![](image)

表 8-9 「Analysis Defaults」ダイアログ ボックスの項目

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>「Add Samples Settings」セクション</td>
<td></td>
</tr>
<tr>
<td>Analysis Protocol</td>
<td>プロトコールが適用されていないサンプルファイルに適用するAnalysis Protocolのドロップダウンリストを表示。新規のMaster Analysis Protocolを作成するか、既存のMaster Analysis Protocolを編集できます。</td>
</tr>
<tr>
<td>「Base Calling (BC)」チェックボックス</td>
<td>選択されている場合、Sample Managerに追加するサンプルごとにBCパラメータのチェックボックスが選択されます。</td>
</tr>
<tr>
<td>「Post Processing (PP)」チェックボックス</td>
<td>選択されている場合、Sample Managerに追加するサンプルごとにPPパラメータのチェックボックスが選択されます。</td>
</tr>
<tr>
<td>「Print (P)」チェックボックス</td>
<td>選択されている場合、Sample Managerに追加するサンプルごとにPパラメータのチェックボックスが選択されます。</td>
</tr>
<tr>
<td>「Sequence File Formats」セクション</td>
<td></td>
</tr>
<tr>
<td>Use the settings in the sample’s Analysis Protocol</td>
<td>選択されている場合、Analysis Protocolのシーケンスファイル形式がサンプルファイルに適用されます。</td>
</tr>
<tr>
<td>Override the sample’s Analysis Protocol and set to</td>
<td>選択されている場合、Analysis Protocolのシーケンスファイル形式が上書きされます。ABIまたはFASTA形式の.seqファイル、.scfファイル、Phred（.phd.1）ファイルの作成が可能です。</td>
</tr>
</tbody>
</table>
表8-10 設定がサンプルに適用される場合

<table>
<thead>
<tr>
<th>設定</th>
<th>設定がサンプルに適用される場合</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Protocol</td>
<td>サンプルにAnalysis Protocolが適用されていない場合</td>
</tr>
<tr>
<td>データ プロセッシング パラメータ</td>
<td>サンプルがSample Managerに追加される場合</td>
</tr>
<tr>
<td>Sequence File Formats パラメータ</td>
<td>サンプルがSample Managerに追加され、解析される場合</td>
</tr>
</tbody>
</table>

重要！サンプルに関連したAnalysis Protocolが適用されている場合、編集されたプロトコールまたは新規プロトコールはサンプルに適用されません。Analysis Protocolの変更の詳細については、8-11ページの「Analysis Protocolの作成と編集」を参照してください。

Analysis Defaultsの設定がない場合

Analysis Defaultsは、ソフトウェアのインストールに含まれています。Analysis Protocolが「None」に設定されており、かつSample Managerに追加されたサンプルに関連したAnalysis Protocolが適用されていない場合、次の警告ボックスが表示されます。Analysis Protocolを含むAnalysis Defaultsの設定がない場合が作成されるまで、Sample Managerにサンプルは追加されません。

Analysis Defaultsへのアクセス方法

「Analysis Defaults」ダイアログボックスにアクセスする方法には、次の2通りがあります。

- 「Analysis」＞「Analysis Defaults」を選択する
- 「Add Samples」ウィンドウで「Analysis Defaults」をクリックする
Analysis Defaults の編集および適用

Analysis Defaults を編集および適用するには

1. 「Analysis」>「Analysis Defaults」を選択します。

2. 「Add Samples Settings」セクションで、次の手順を実行します。
   a. ドロップダウンリストから「Analysis Protocol」を選択します。

   注：Analysis Protocol を作成または編集するには、「Analysis Protocol」ドロップダウンリストを使用して「New」または「Edit」を選択し、8-3 ページを参照して設定を定義してください。

   b. 「BaseCalling (BC)」、「PostProcessing (PP)」および「Print (P)」オプションを選択してください。

3. 「Sequence File Formats」セクションで、現在の設定を使用するか無効にするかを選択した後、Phred ファイルを作成するオプションを選択してください。

4. 「OK」をクリックします。

5. Sample Manager にサンプルを追加します。

6. シーケンスファイル形式の設定を変更した場合、サンプルを解析してください。

「Add Samples」ダイアログ ボックスで Analysis Defaults を編集および適用するには

1. 〈Add Sample(s)〉をクリックするか、「File」>「Add Samples」を選択します。

2. 「Add Samples」ダイアログ ボックスで、「Sample Manager」ウィンドウに追加するファイルを含むフォルダを探して開きます。

3. ダイアログ ボックスの「Samples To Add」ペインで、Sample Manager で必要なファイルを選択します。

4. 「Analysis Defaults」をクリックします。
5. 「Add Samples Settings」セクションで、次の手順を実行します。
   a. ドロップダウンリストから「Analysis Protocol」を選択します。

   注：Analysis Protocolを作成または編集するには、「Analysis Protocol」ドロップダウンリストを使用して「New」または「Edit」を選択し、8-3 ページを参照して設定を定義してください。

   b. 「Base Calling (BC)」、「Post Processing (PP)」、および「Print (P)」オプションを必要に応じて選択/選択解除します。

6. 「Sequence File Formats」セクションで、現在の設定を使用するか無効にするかを選択した後、Phred ファイルを作成するオプションを選択/選択解除します。

7. 「OK」をクリックして「Analysis Defaults」ダイアログ ボックスを閉じます。

8. 「Add Selected Samples」をクリックします。

9. 「OK」をクリックしてサンプルを追加し、ダイアログ ボックスを閉じます。

10. シーケンス ファイル形式の設定を変更した場合、サンプルを解析してください。
Options

「Options」ダイアログボックスを使用して、ファイル形式、自動印刷、ユーザ作成、およびオーディットトレールのオプションを設定できます。

「Options」ダイアログボックスを開くには、「Tools」 > 「Options」を選択します。

「Options」ダイアログボックスの項目

次の表は、「Options」ダイアログボックスの4つのタブについて示しています。

表 8-11 「Options」ダイアログボックスの項目

<table>
<thead>
<tr>
<th>タブ</th>
<th>このビュー内で可能な操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>File Format</td>
<td>ファイル形式に対して Analysis Protocol 設定を無効にする</td>
</tr>
<tr>
<td>Printing</td>
<td>自動印刷に対してデフォルトの印刷パラメータを変更する</td>
</tr>
<tr>
<td>Users</td>
<td>新規ユーザを作成し、現在のユーザ情報を編集する。アドミニストレータのみがこのタブを使用できます。</td>
</tr>
<tr>
<td>Authentication &amp; Audit</td>
<td>ユーザのロックアウト、パスワードの変更、オーディットトレールのアクティブ化、およびデータの変更理由の定義</td>
</tr>
</tbody>
</table>
「File Format」タブ

![File Format Settings](image)

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the settings in the sample's Analysis Protocol</td>
<td>選択されている場合、Analysis Protocol または Analysis Defaults のシーケンスファイル形式が使用されます。</td>
</tr>
<tr>
<td>Override the sample's Analysis Protocol and use</td>
<td>選択されている場合、新規のシーケンスファイル形式の選択により Analysis Protocol および Analysis Defaults の設定が無効になります。</td>
</tr>
<tr>
<td></td>
<td>選択されている場合、解析中、ソフトウェアにより次のファイルが作成されます。</td>
</tr>
<tr>
<td></td>
<td>• .seq ファイル。シーケンスをテキストファイルとして印刷したり、ファイルを他のソフトウェアで使用できます。</td>
</tr>
<tr>
<td></td>
<td>– Applied Biosystems ソフトウェアでは、ABI形式を使用します。</td>
</tr>
<tr>
<td></td>
<td>– 他のソフトウェアでは、FASTA形式を使用します。</td>
</tr>
<tr>
<td></td>
<td>• Standard Chromatogram Format（.scf）ファイル</td>
</tr>
<tr>
<td></td>
<td>• Phred（.phd.1）ファイル</td>
</tr>
</tbody>
</table>

表8-12「Sequence File Formats」セクションの項目
表8-13「Printing」タブの項目

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>「Print Settings」セクション</td>
<td></td>
</tr>
<tr>
<td>「Panels per Page」 ドロップダウン リスト</td>
<td>各グラフィカルビュー（「Electropherogram」、「Raw Data」、「EPT」）ページに印刷するパネル数を選択します。デフォルトは、1500ポイントの4パネルです。範囲は1〜15パネルです。</td>
</tr>
<tr>
<td>「Points per Panel」 値ボックス</td>
<td>各パネル内のデータポイント数を表示します。デフォルトは、パネル当たり1500データポイント（〜120塩基）です。パネル当たりのデータポイント数を減らすほど、ピークは広くなり、パネル当たりの塩基数は少なくなります。範囲は100〜12000ポイントです。</td>
</tr>
<tr>
<td>Show Vertical Axis on Graphs</td>
<td>グラフの縦軸を表示/非表示にします。</td>
</tr>
<tr>
<td>Show QV Bars (if available)</td>
<td>エレクトロフェログラムビューおよびシーケンスビュー内のQVバーを表示/非表示にします。</td>
</tr>
<tr>
<td>Use Printer</td>
<td>プリンタを選択するときに使用します。</td>
</tr>
<tr>
<td>「Include in Printout」セクション</td>
<td></td>
</tr>
<tr>
<td>ビューとページ</td>
<td>印刷対象のビューと、そのビューのページ数を選択します。デフォルトは「Electropherogram」と「all」ページです。ページ範囲は1〜5です。</td>
</tr>
</tbody>
</table>

Applied Biosystems DNA Sequencing Analysis ソフトウェア v5.1 ユーザーガイド 8-23
第8章 Analysis Protocol、オプション、および Analysis Defaults

「Users」タブ

重要！アドミニストレータは、「Users」タブの情報を設定および変更できる唯一のユーザです。このタブの選択項目は、他のすべてのユーザに対して使用不可能になっています。

表 8-14 「Users」タブの項目

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Name list</td>
<td>すべてのユーザ名、ユーザグループ、およびアクティビティデータのリスト</td>
</tr>
<tr>
<td>New</td>
<td>新規ユーザを作成し、ユーザグループを割り当てる</td>
</tr>
<tr>
<td>Open</td>
<td>ユーザ情報を開いて変更または確認する</td>
</tr>
<tr>
<td>Import</td>
<td>他のコンピュータからユーザプロファイルをインポートする</td>
</tr>
<tr>
<td>Export</td>
<td>他のコンピュータにユーザプロファイルをエクスポートする</td>
</tr>
</tbody>
</table>

「Authentication & Audit」タブ

重要！アドミニストレータは、「Authentication & Audit」タブの情報を設定および変更できる唯一のユーザです。このタブの選択項目は、他のすべてのユーザに対して使用不可能になっています。
表8-15「Authentication & Audit」タブの項目

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>「Authentication Settings」セクション</td>
<td></td>
</tr>
<tr>
<td>Lockout user after ___ invalid login attempts</td>
<td>不正なユーザーやパスワードの入力が指定された試行回数を超えた場合、ユーザーやソフトウェアからロックアウトする</td>
</tr>
<tr>
<td>within ___ minutes</td>
<td>時間を定義する</td>
</tr>
<tr>
<td>Maintain lockout for ___ minutes</td>
<td>ユーザーやソフトウェアからロックアウトされる時間</td>
</tr>
<tr>
<td>「Timeout Feature On」チェック ボックス</td>
<td>タイムアウト機能のオン/オフ切替え。デフォルトではオフになっています。</td>
</tr>
<tr>
<td>Automatic timeout after ___ minutes</td>
<td>プログラムを再起動するためのパスワード入力をユーザーや要求するまでの、プログラムの非アクティブ時間（分）</td>
</tr>
<tr>
<td>Change password every ___ days</td>
<td>指定した期間ですべてのユーザーやグループがパスワードを変更することを要求する</td>
</tr>
<tr>
<td>「Audit Trail」セクション</td>
<td></td>
</tr>
<tr>
<td>「Audit Trail On」チェック ボックス</td>
<td>オーセット トレーリ機能のオン/オフ切替え。デフォルトではオフになっています。</td>
</tr>
<tr>
<td>Audit Reason</td>
<td>塩基の変更、挿入、削除、およびデータに対する他の操作に対する理由を定義する</td>
</tr>
<tr>
<td>「New」ボタン</td>
<td>追加の理由を作成するときに使用する</td>
</tr>
<tr>
<td>「Open」ボタン</td>
<td>理由を修正または確認するために使用する</td>
</tr>
</tbody>
</table>

コントロール ボタン

- Revert to Defaults...  OK  Cancel

「Printing」タブのみに表示されます。

表8-16 コントロール ボタンの機能

<table>
<thead>
<tr>
<th>ボタン</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revert to Defaults</td>
<td>タブ内の設定をすべてデフォルト設定に戻します。</td>
</tr>
<tr>
<td>「Printing」タブのみ）</td>
<td></td>
</tr>
<tr>
<td>OK</td>
<td>未確定の変更をすべて受け付け、ダイアログボックスを閉じます。</td>
</tr>
<tr>
<td>Cancel</td>
<td>変更を受け付けずにダイアログボックスを閉じます。</td>
</tr>
</tbody>
</table>
シーケンスファイル形式の変更方法
シーケンスファイル形式を変更するには、複数の方法があります。

「Analysis Defaults」ダイアログボックスの場合
- 「Analysis」 > 「Analysis Defaults」を選択します（8-19 ページを参照）。または
- 「Add Samples」ウィンドウで「Analysis Defaults」をクリックします（8-19 ページを参照）。

「Options」ダイアログボックスの場合
「Options」ダイアログボックスの設定を変更するには
1. 「Tools」 > 「Options」を選択し、「File」タブを選択します。
2. サンプルの Analysis Protocol を無効にする（override）選択の後、ファイル形式を選択します。
3. 「OK」をクリックします。
4. Sample Manager でサンプルを追加します。
5. サンプルを再解析して、新規のファイル形式を作成します。
6. サンプルを保存します。

サンプルごとの Analysis Protocol の場合
サンプルごとの Analysis Protocol を変更するには
1. Sample Manager でサンプルを追加します。
2. Sample Manager でサンプルを選択します。
3. 「Analysis」 > 「Analysis Protocol」を選択します。
4. 「General」タブでファイル形式を選択します。
5. 「OK」をクリックします。
6. サンプルを再解析して、新規のファイル形式を作成します。
7. サンプルを保存します。

データプロセッシングパラメータの変更方法
データプロセッシングパラメータ（BC、PP、P）を変更するには、複数の方法があります。

「Analysis Defaults」ダイアログボックスの場合
- 「Analysis」 > 「Analysis Defaults」を選択します（8-19 ページを参照）。または
- 「Add Samples」ウィンドウで「Analysis Defaults」をクリックします（8-19 ページを参照）。

Sample Manager の場合
Sample Manager のパラメータを変更するには
1. Sample Manager でサンプルを追加します。
2. 「BC」、「PP」、「P」チェックボックスを必要に応じて選択/選択解除します。
解析パラメータの変更方法

サンプルごとの Analysis Protocol の場合

サンプルごとの Analysis Protocol を変更するには
1. Sample Manager にサンプルを追加します。
2. Sample Manager でサンプル列を選択します。
3. 「Analysis」>「Analysis Protocol」を選択します。
4. 「Basecalling」タブを選択し、必要に応じて Basecaller と DyeSet/Primer ファイルを変更します。
   重要！Basecaller ファイルと DyeSet/Primer ファイルのタイプが一致していることを確認してください。
5. 310 および 377 データについては、ドロップダウンリストからマトリックスを選択します。
6. 「OK」をクリックします。
7. サンプル再解析します。
8. サンプルを保存します。

Sample Manager の場合

Basecaller および DyeSet/Primer ファイル（またはそのいずれか）を変更するには
1. Sample Manager でサンプルを選択します。
2. 「Basecaller」ドロップダウンリストで、新規の Basecaller を選択します。
3. 「DyeSet/Primer」ドロップダウンリストで、新規の DyeSet/Primer ファイルを選択します。
   重要！Basecaller ファイルと DyeSet/Primer ファイルのタイプが一致していることを確認してください。
4. 310 および 377 データについては、ドロップダウンリストからマトリックスを選択します。
5. 「BC」チェックボックスを選択します（必要に応じて「PP」や「P」チェックボックスも選択します）。
6. サンプル再解析します。
7. サンプルを保存します。
Analysis Protocol 設定の変更方法

サンプルごとの Analysis Protocol を変更するには
1. Sample Manager にサンプルを追加します。
2. Sample Manager でサンプルを選択します。
3. 「Analysis」>「Analysis Protocol」を選択します。
4. 必要に応じて、「General」、「Basecalling」、「Mixed Bases」、「Clear Range」タブで変更を行います。
5. 「OK」をクリックします。
6. サンプルを再解析し、保存します。

サンプルごとの Analysis Protocol を変更する

Analysis Protocol Manager の場合

Analysis Protocol Manager で、次の手順を実行します。
1. Sample Manager にサンプルを追加します。
2. Sample Manager でサンプルを選択します。
   • [Shift] キーを使用して、連続したサンプルを選択します。
   • [Ctrl] キーを使用して、不連続のサンプルを選択します。
3. 「Analysis」>「Analysis Protocol Manager」を選択します。「Analysis Protocol Manager」が開きます。
4. 変更する Analysis Protocol を開いて、次の手順を実行します。
   a. 必要に応じて、「General」、「Basecalling」、「Mixed Bases」、「Clear Range」タブで変更を行います。
   b. 「OK」をクリックします。
5. 適用する Analysis Protocol を選択し、次の手順のいずれかを実行します。
   • 「Apply to Selected Samples」をクリックして、手順 2 で選択したサンプルファイルにプロトコールを適用する
   • 「Apply to All Samples」をクリックして、Sample Manager 内のすべてのサンプルファイルにプロトコールを適用する
6. 「Done」をクリックして「Analysis Protocol Manager」を閉じます。
7. サンプルを再解析します。
8. サンプルを保存します。
Display Settings

この章では、次の項目について説明します。

Display Settings について ........................................... 9-2
「Bases」タブ ............................................................... 9-3
「Data」タブ ............................................................... 9-6
コントロール ボタン .................................................... 9-8
「Display Settings」の変更 ........................................... 9-9
Display Settings について

サンプル ウィンドウの「Electropherogram」ビュー、「Raw」ビュー、および「EPT」ビューについては、「Display Settings」ダイアログ ボックスを使用して、次の操作を行えます。

- 各種のデータを表すために使用する色を決定する
- 画面で見やすいように、波形の色を変更する
- 1 つまたは複数の波形を選択してオフにする
- 表示に使用されるスケーリングの種類を変更する
- Quality Value（QV）および元の塩基の表示を選択してオンにする
- QV および Length of Read（LOR；読み取りの長さ）の範囲を表す色を選択する

重要！このダイアログ ボックスで行った変更はすべて、選択したビューのすべての表示に影響を与え、このダイアログ ボックスで再度設定を変更するまで有効です。

「Display Settings」ダイアログ ボックスを開くには、「Analysis」＞「Display Settings」を選択するか、「 をクリックしてください。

「Display Settings」ダイアログ ボックスには 2 つのタブ、「Bases」と「Data」があります。これらのタブについては、9-2 ページの表 9-1 で説明します。

<table>
<thead>
<tr>
<th>タブ</th>
<th>このタブで可能な操作</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bases</td>
<td>- 表示された塩基のフォントの種類、サイズ、スタイル、および色を変更する</td>
</tr>
<tr>
<td></td>
<td>- QV バーおよび元の塩基の表示 / 非表示を選択する</td>
</tr>
<tr>
<td></td>
<td>- LOR の色および範囲を変更する</td>
</tr>
<tr>
<td>Data</td>
<td>- エレクトロフェログラム、Raw Data、および EPT Data の表示パラメータを変更する</td>
</tr>
<tr>
<td></td>
<td>- 1 つ以上の波形を選択的にオフにする。</td>
</tr>
</tbody>
</table>

表 9-1 「Display Settings」ダイアログ ボックスの項目
「Bases」タブ

「Bases」タブの項目 「Display Settings」ダイアログ ボックスの「Bases」タブには、4つのセクションがあります。セクションは次のとおりです。

- Style
- Sample File Display
- Report Display
- Example

「Style」セクション このセクションでは、画面と印刷データの両方に対して、フォントの種類、サイズ、スタイル、および色を変更できます。

表 9-2 「Style」セクションの項目

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>Font</td>
<td>ドロップダウン リストを使用して、別のフォントの種類、サイズ、スタイルを選択します。</td>
</tr>
<tr>
<td>Color</td>
<td>このオプションを使用して、前景（塩基）と背景の色を変更します。色を変更するには 1. 変更する色を選択します。「Select a color」ダイアログ ボックスが開きます。 2. 新規の色を選択します。 3. 「OK」をクリックします。</td>
</tr>
</tbody>
</table>
第9章 Display Settings

「Sample File Display」セクション

このセクションでは、画面と印刷データの両方に対して、QV バーおよび元の塩基（またはそのいずれか）の表示/非表示を選択できます。

![Sample File Display](image)

スライダ

表 9-3 「Sample File Display」セクションの項目

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>「Show QV Bars」チェック ボックス</td>
<td>KB Basecaller で解析されたサンプルに対して各塩基の QV を表示します。デフォルト設定では、このチェック ボックスは選択されています。詳細については、第 6 章「Quality Value」を参照してください。</td>
</tr>
</tbody>
</table>
| Bar Color        | 「Bar Color」を使用して、Quality Value の高さの範囲や、QV に関連付けられた色を修正することができます。

範囲を変更するには、2 つのスライダを使用して、低い、中程度、高い範囲を定義します。

<table>
<thead>
<tr>
<th>QV バー</th>
<th>デフォルトの色と範囲</th>
<th>この範囲設定で識別されるデータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>低</td>
<td>0 ～ 14</td>
<td>許容不可</td>
</tr>
<tr>
<td>中</td>
<td>15 ～ 19</td>
<td>手作業による閲覧が必要</td>
</tr>
<tr>
<td>高</td>
<td>20 以上</td>
<td>許容可能</td>
</tr>
</tbody>
</table>

色を変更するには
1. 変更する色を選択します。「Select a color」ダイアログ ボックスが開きます。
2. 新規の色を選択します。
3. 「OK」をクリックします。

Show Original Bases

選択されている場合、2 行のデータが表示されます。上の行は元のデータ、下の行は編集可能なシーケンスです。デフォルト設定では、このチェック ボックスは選択解除されています。

詳細については、4-11 ページの「オリジナル データの表示」を参照してください。
「Report Display」セクション
このセクションでは、アナリシス レポートの LOR（読み取りの長さ）および表示情報の設定できます。

<table>
<thead>
<tr>
<th>項目：Length Of Read (LOR)</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>使用可能な高品質または高精度塩基の範囲で、Quality Value によって決定されます。サンプル ファイルを開かずに、アナリシス レポートで表示できます。</td>
</tr>
</tbody>
</table>

「LOR Indicator」バー
「LOR Indicator」バーを使用して、読み取りの長さの範囲や、LOR に関連付けられた色を修正することができます。
範囲を変更するには
2 つのスライダを使用して、読み取りの長さの範囲を設定します。スライダを移動すると、5 塩基ずつ増えていきます。
色を変更するには
1. 変更する色を選択します。「Select a color」ダイアログ ボックスが開きます。
2. 新規の色を選択します。
3. 「OK」をクリックします。

「Example」セクション
このセクションを使用して、各種の設定（色、QV など）が適用されたシーケンスの例を表示できます。
「Data」タブ

「Data」タブには、「Electropherogram」、「Raw Data」、および「EPT」ビューの「Display Setting」コントロールがあります。

展示設定ウィンドウ画面

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pane Height, Single Sample (cm or Full Screen)</td>
<td>編集可能な数値を入力して、エレクトロフェログラム、Raw Data、および EPT Data を表示するペインの高さを設定します。値は「Full Screen」または列の高さ（cm）のいずれかです。デフォルト値は「Full Screen」です。</td>
</tr>
<tr>
<td>Pane Height, Multiple Samples (cm or Full Screen)</td>
<td>編集可能な数値を入力して、エレクトロフェログラム、Raw Data、および EPT Data を表示するペインの高さを設定します。値は「Full Screen」または列の高さ（cm）のいずれかです。値が小さいほど、1 つの画面に表示されるデータペインの数が増えます。</td>
</tr>
<tr>
<td>Vertical Scale (%)</td>
<td>編集可能な数値を入力して、ペインの高さに適切なデータのスケーリングを設定します。範囲は 1 〜 100 です。EPT データの場合、スケーリングは各カテゴリーの最高ビックに設定されます。</td>
</tr>
<tr>
<td>Horizontal Scale (%)</td>
<td>編集可能な数値を入力して、ペインの幅に適切なデータのスケーリングを設定します。範囲は 1 〜 100 です。</td>
</tr>
<tr>
<td>Show A Data, Show C Data, Show G Data, Show T Data</td>
<td>選択されている場合、A、C、G、T のエレクトロフェログラムおよび Raw Data の波形が表示されます。デフォルトではすべてが選択されています。デフォルトの色は次のとおりです。</td>
</tr>
<tr>
<td>• A = 緑</td>
<td></td>
</tr>
<tr>
<td>• C = 青</td>
<td></td>
</tr>
<tr>
<td>• G = 黄</td>
<td></td>
</tr>
<tr>
<td>• T = 赤</td>
<td></td>
</tr>
</tbody>
</table>
### 「Data Display」セクションの項目（続き）

<table>
<thead>
<tr>
<th>項目</th>
<th>機能</th>
</tr>
</thead>
</table>
| Show Volts/100、Show µAmps、Show mWatts x 10、Show Degrees C | 選択されている場合、Volts、µAmps、mWatts、および温度のデータの波形が表示されます。デフォルトではすべてが選択されており、色は次のとおりです。  
  - Volts/100 = 青  
  - µAmps = 緑  
  - mWatts = 黒  
  - Degrees C = 赤 |
### コントロール ボタン

<table>
<thead>
<tr>
<th>ボタン</th>
<th>機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revert to Defaults</td>
<td>タブ内の設定をすべてデフォルト設定に戻します。</td>
</tr>
<tr>
<td>OK</td>
<td>未確定の変更をすべて受け付け、ダイアログ ボックスを閉じます。</td>
</tr>
<tr>
<td>Cancel</td>
<td>変更を受け付けずにダイアログ ボックスを閉じます。</td>
</tr>
</tbody>
</table>
「Display Settings」の変更

Display Settings を変更するには
1. 「Analysis」>「Display Settings」を選択するか、□ をクリックします。「Display Settings」ダイアログ ボックスが開きます。
2. 「Bases」タブを選択し、必要に応じて変更を行います。
3. 「Data」タブを選択し、必要に応じて変更を行います。
4. 「OK」をクリックします。

表示の変更が Sample Manager 内にあるサンプルファイルと、Sample Manager に新たに追加されるサンプルに対して適用されます。このダイアログ ボックス内で設定を再度変更するまで、この変更は有効です。

デフォルト設定に戻す

デフォルト設定に戻すには
1. 「Analysis」>「Display Settings」を選択するか、□ をクリックします。「Display Settings」ダイアログ ボックスが開きます。
2. 「Bases」タブで、次の作業を行います。
   a. 「Revert to Defaults」をクリックします。
   b. 「Revert to Defaults」ダイアログ ボックスで「Yes」をクリックします。
3. 「Data」タブで、次の手順を実行します。
   a. 「Revert to Defaults」をクリックします。
   b. 「Revert to Defaults」ダイアログ ボックスで「Yes」をクリックします。
4. 「OK」をクリックします。
第 9 章 Display Settings
この章では、次の項目について説明します。

Sequencing Analysis におけるマトリックス ファイルの作成 .........................10-2
Data Collection ソフトウェア用マトリックス ファイルの複製 .........................10-5
Sequencing Analysis におけるマトリックスファイルの作成

このユーティリティは、ABI PRISM® 310 ジェネティックアナライザまたは ABI PRISM® 377 DNA Sequencer で作成されたデータからマトリックスファイルを作成するために使用します。

マトリックスファイルは、異なる 2 つの種類のデータから作成できます。
- データ内に A、G、C、T が適切に分散されている 1 つのサンプルファイル
- マトリックススタンダードデータファイル

これらのファイルには、サンプル当たり 1 色のみが含まれています。

1 つのサンプルファイルの使用
1 つのサンプルファイルからマトリックスを作成するには
1. 「Tools」＞「Make Matrix」を選択します。「Make Matrix」ダイアログボックスが開きます。

2. 「Single File (all dyes)」のラジオボタンが選択されていることを確認してください。
3. 1 行目の横にあるボタンをクリックします。「Open」ダイアログボックスが開きます。
4. マトリックスに使用するファイルを選択し、「Open」をクリックします。
5. 新規のマトリックスファイルの名前を、拡張子 .mtx を付けて入力します。

重要！パスは変更せずに、マトリックス名のみを変更してください。
ファイルがドライブ名 :AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Matrix\matrixname.mtx に保存されていない場合、Sample Manager または Analysis Protocol 内でマトリックスを選択することはできません。

6. 「Make Matrix」をクリックします。
マトリックスが正常に作成された場合、次のメッセージが表示されます。

「OK」をクリックして、作成されたマトリックスファイルと「Make Matrix」ダイアログボックスを閉じます。

マトリックススタンダードファイルの使用

4 つのマトリックススタンダードファイルからマトリックスを作成するには
1. 「Tools」>「Make Matrix」を選択します。「Make Matrix」ダイアログボックスが開きます。

2. 「Four Files (one file per dye)」のラジオボタンを選択します。
3. 行の横にあるボタンをクリックします。「Open」ダイアログボックスが開きます。

Applied Biosystems DNA Sequencing Analysis ソフトウェア v5.1 ユーザーガイド 10-3
4. マトリックスの作成に使用するファイルの1つを選択し、「Open」をクリックします。

5. 手順3と4を繰り返して、4つのファイルすべてを選択します。
   重要！ 緑、青、黄、赤のデータを表すファイルがあることを確認してください。色の順番は関係ありません。

6. 新規マトリックスの名前を、拡張子.mtxを付けて入力します。
   重要！ パスは変更せず、マトリックス名のみを変更してください。
   ファイルがドライバ名：\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Matrix\matrixname.mtxに保存されていない場合、Sample ManagerまたはAnalysis Protocol内でマトリックスを選択することはできません。

7. 「Make Matrix」をクリックします。
   マトリックスが正常に作成された場合、次のメッセージが表示されます。

「OK」をクリックして、作成されたマトリックスファイルと「Make Matrix」ダイアログボックスを閉じます。
Data Collection ソフトウェア用マトリックスファイルの複製

310 および 377 Data Collection ソフトウェアでは、解析ソフトウェアとは異なるフォルダの場所でマトリックスファイルにアクセスし、保存します。プリファレンスとサンプルシートで新規のマトリックスファイルを選択可能にするには、Data Collectionフォルダ内のMatrixフォルダにマトリックスファイルの複製をコピーします。

マトリックスファイルを Data Collectionフォルダ内にコピーするには

1. Sequencing Analysis v5.1のMatrixフォルダの場所に移動します。
   D:\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Matrix

2. Matrixフォルダを開いて、コピーするマトリックスファイルを選択します。

3. [Ctrl]キーを押しながら [C]キーを押してファイルをコピーします。

4. データの取り込みで使用されるMatrixフォルダの場所に移動します。
   D:\AppliedBio\Shared\Analysis\Basecaller\Matrix

5. [Ctrl]キーを押しながら[V]キーを押して、ファイルをフォルダ内にペーストします。
310 サンプル ファイルの自動解析

この章では、次の項目について説明します。

310 サンプル ファイルの自動解析 .................................11-2
ソフトウェアの自動解析設定 ........................................11-3
自動解析の機能 ......................................................11-6
310 サンプル ファイルの自動解析

要件

ABI PRISM® 310 ジェネティック アナライザで作成されたシーケンシング データは、
Applied Biosystems Sequencing Analysis ソフトウェア v5.1 によって自動的に解析すること
ができます。自動解析は、サンプル ファイルを取り込んだものと同じ装置のコンピュータで
のみ実行できます。ソフトウェアを設定することにより、ユーザによる操作を介さずに入力データ
取り込みやデータ解析を実行できます。

自動解析に必要な条件は次のとおりです。

• Microsoft® Windows® 2000、Service Pack 3 オペレーティング システム
• 310 Data Collection ソフトウェアと Sequencing Analysis ソフトウェア v5.1 が同じコン
  ピュータ上にロードされていること
• マトリックス ファイルと DyeSet/Primer ファイルが適切なフォルダ内にコピーされており、
  Data Collection と解析ソフトウェアの両方で使用できること（1-16 ページの「310 マトリッ
  クスおよび DyeSet/Primer ファイルのコピー」を参照）
• 310 Data Collection ソフトウェアが、解析ソフトウェアの自動バージョンを開くように設
  定されていること（11-3 ページを参照）
• Analysis Defaults が解析ソフトウェアで作成されていること（11-5 ページを参照）

解析ソフトウェアの
自動バージョン

Sequencing Analysis ソフトウェアの自動バージョンは、Automation310.exe という名前です。
Sequencing Analysis ソフトウェアの自動バージョンは、ユーザ インタフェースが存在しない
という点を除いて、ソフトウェアの標準バージョンと同じです。Data Collection ソフトウェ
アは、このバージョンのソフトウェアを開いてデータを解析します。

Sequencing Analysis ソフトウェアの自動バージョンと標準バージョンは、Sequencing
Analysis ソフトウェア v5.1 のインストール CD から自動的にインストールされます。
ソフトウェアの自動解析設定

Data Collection ソフトウェアを設定するには
1. 310 Data Collection ソフトウェアを開きます。
2. 「Windows」>「Preferences」>「General Settings」を選択します。
3. 「Sequence Injection List Defaults」タブを選択し、次の手順を実行します。

![Preference Settings Image]

a. 「Autoanalyze with」ドロップダウンリストで「Other」を選択します。
b. 「Select」ダイアログボックスで、次の場所に移動します。
   D:\AppliedBiosystems\SeqA5.1\AppSeqA
c. 「Files of type」ドロップダウンリストで「All Files」を選択します。

![Select Files Image]
b. Automation310.exe ファイルを選択し、「Select」をクリックします。

「Select」ダイアログ ボックスが閉じて、「Sequence Injection List Defaults」タブにパスが表示されます。

4. 「Sequence Sample Sheet Defaults」タブを選択し、次の手順を実行します。

a. 「DyeSet/Primer」ドロップダウン リストで DyeSet/Primer ファイルを選択します。適切な DyeSet/Primer と Basecaller の組合せを選択するには、付録 C 「Basecallers と DyeSet/Primer ファイル」を参照してください。
重要！DyeSet/Primer ファイルは、Data Collection と作成する Analysis Protocol で使用しているケミストリおよびBasecaller の種類と一致する必要があります。

b.「Matrix」ドロップダウンリストでマトリックスファイルを選択します。

5. 「OK」をクリックします。

Sequence Analysis ソフトウェアの設定

サンプルファイルは Sample Manager に追加されると、次に Analysis Defaults を通過します。Analysis Defaults には、データ プロセッシング パラメータの設定（ベースコーリング、ポストプロセッシング、印刷）、ファイル形式の設定（seq、scf、.phd.1）、および Analysis Protocol が含まれています。含まれていない場合のみ、Analysis Protocol はサンプルに割り当てられます。310 サンプルファイルには Analysis Protocol が含まれていません。

Analysis Defaults を設定するには

1. 「Analysis」＞「Analysis Defaults」を選択します。

2. 「Add Samples Settings」セクションで、次の手順を実行します。

a. 「Analysis Protocol」ドロップダウンリストで、次のいずれかを行います。
- Basecaller、DyeSet/Primer ファイル、マトリックスファイル、および他の設定がラン条件に対して正しい場合、デフォルトの Master Analysis Protocol である310POP6_BDTv3-KB-DeNovo_v5.1 を選択します。8-5 ページの表 8-4 を参照してください。

3. 「Sequence File Formats」セクションで、現在の設定を使用するか無効にするかを選択した後、Phred ファイルを作成するオプションを選択/選択解除します。

4. 「OK」をクリックします。
自動解析の機能

Data Collection ソフトウェア
Data Collection ソフトウェアは、装置を作動させ、蛍光データを取り込んで、Raw Data をサンプルファイルに保存します。ランが終了すると、Data Collection ソフトウェアは Automation310.exe を起動します。

Automation310 ソフトウェア
解析ソフトウェアの Automation310 バージョンは、Analysis Protocol を含む Analysis Defaults をデータに適用します。ソフトウェアは、データを解析して保存し、解析済みデータと Analysis Protocol をサンプルファイルに保存します。解析が完了すると、Automation310 ソフトウェアは自動的に終了します。

重要！このバージョンの解析ソフトウェアにはユーザインタフェースが組み込まれていないため、解析プロセスは表示されません。

Sequencing Analysis ソフトウェア
サンプルファイルを操作するには、Sequencing Analysis ソフトウェア v5.1 を開きます。対象のファイルを Sample Manager に追加して、データの表示、編集、再解析、印刷、および保存（またはそのいずれか）を行います。
よくある質問

この付録では、ABI PRISM® Sequencing Analysis ソフトウェア v5.1. に関してよくある質問の回答を説明します。

この付録では、次の項目について説明します。

一般的な質問と回答 .................................................. A-2
Sample Manager に関する質問と回答 .................................. A-4
サンプル ファイルに関する質問と回答 .............................. A-5
Analysis Protocol に関する質問と回答 ................................. A-6
Quality Value（QV）に関する質問と回答 ............................ A-7
アナリシス レポートに関する質問と回答 ............................ A-8
印刷に関する質問と回答 ............................................. A-9
## 一般的な質問と回答

<table>
<thead>
<tr>
<th>質問</th>
<th>回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequencing Analysis ソフトウェアとは</td>
<td>Sequencing Analysis ソフトウェアは、シーケンシングファイルの閲覧、表示、解析、編集、保存、および印刷に使用される多目的ソフトウェアです。</td>
</tr>
<tr>
<td>Sequencing Analysis ソフトウェア v5.1 が v3.7 と異なる点は？</td>
<td>新機能には、次のものがあります。 1. 単一およびミックスベースの読み取りに対するベースコーリングを実行する新しい Bascallerアルゴリズム 2. 単一およびミックスベース読み取りに対するベースコール精度情報を提供する Quality Value の生成 3. トラブルシューティングに役立て、データ品質を簡単に評価できるアラートレポート 4. 新しい Sample Manager インタフェース 5. 読み取りの長さ（LOR）の計算 6. 塩基置換のオーディットトラックを作成するオプション機能</td>
</tr>
<tr>
<td>KB Basecaller とは？</td>
<td>Sequencing Analysis ソフトウェアにおける新しいベースコーリングアルゴリズムで、ベースコーリング、ミックスベースの識別、および塩基当たりの Quality Value（QV）を作成します。</td>
</tr>
<tr>
<td>ABI Basecaller とは？</td>
<td>Sequencing Analysis ソフトウェアの旧バージョン（v3.7 以前）で採用されていたアルゴリズムを使用する Bascaller</td>
</tr>
<tr>
<td>FASTA 形式とは？</td>
<td>FASTA 形式のシークエンスは、1行だけの記述から開始し、シークエンスデータ行が後続します。記述は、最初のカラムの大なり記号（&gt;）によってシークエンスデータと区別されます。</td>
</tr>
<tr>
<td>FASTA 以外のファイルを正しい形式に変換する方法は？</td>
<td>Microsoft Word でファイルを作成する場合、必ずテキストのみの形式で保存してください（強制改行は保存されますが、スペースは保存されません）。</td>
</tr>
<tr>
<td>.phd.1 ファイルとは？</td>
<td>Phred ファイルには、ヘッダのほかにデータの説明、修正ベースコール、割り当てられた Quality Value、およびピーク位置が含まれています。このファイルは、任意のテキストエディタで開けます。</td>
</tr>
<tr>
<td>.phd.1 ファイルを開く方法は？</td>
<td>Staden パッケージと互換性がある Standard Chromatogram Format (.scf)のファイル形式。</td>
</tr>
<tr>
<td>.scf ファイルとは？</td>
<td>.scfファイルを開く方法は？</td>
</tr>
<tr>
<td>.scfファイルを開く方法は？</td>
<td>Staden パッケージと互換性がある Standard Chromatogram Format (.scf)のファイル形式。注：Standard Chromatogram Format形式のファイルが作成された場合、ファイル名に拡張子 .scf は付加されませんが、正しいファイル形式です。</td>
</tr>
<tr>
<td>Sequencing Analysis 用のデータを作成する際に使用可能な ABI装置は？</td>
<td>Sequencing Analysis ソフトウェアは、次の装置で作成されたシーケンスファイルを解析し、ポストプロセッシングします。Applied Biosystems 3730/3730xl DNA Analyzer, ABI PRISM® 3100/3100-Avant ジェネティックアナライザ, ABI PRISM® 310 ジェネティックアナライザ, ABI PRISM® 377 DNA Sequencer</td>
</tr>
</tbody>
</table>

---

A-2  Applied Biosystems DNA Sequencing Analysis ソフトウェア v5.1 ユーザーガイド
表 A-1 一般的な質問と回答（続き）

<table>
<thead>
<tr>
<th>質問</th>
<th>回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequencing Analysis ソフトウェアに最低限必要なコンピュータ条件は？</td>
<td>• CPU – 733 MHz 以上、シングル プロセッサ&lt;br&gt;• メモリ – 512 MB の RAM&lt;br&gt;• OS – Microsoft® Winows XP Service pack 1 または Windows® 2000 Service pack 3&lt;br&gt;• 1 GB のハード ドライブ&lt;br&gt;• Intel Pentium® III または IV チップ、Xeon は不可</td>
</tr>
<tr>
<td>必要な最低モニタ解像度は？</td>
<td>1024 × 768 ピクセル</td>
</tr>
<tr>
<td>Sequencing Analysis ソフトウェアで期待されるパフォーマンスは？</td>
<td>パフォーマンスは、コンピュータの仕様によって異なります。</td>
</tr>
<tr>
<td>Sequencing Analysis ソフトウェアを使用する場合、ABI PRISM® SeqScape® ソフトウェアが必要ですか？</td>
<td>Sequencing Analysis ソフトウェアは、シークンシング ファイルの閲覧、表示、解析、編集、および印刷に使用される多目的ソフトウェアです。SeqScape ソフトウェアは、シークンスの比較専用に設計されたものです。すべての研究室における一般的なトラブルシューティングやデータの閲覧には、Sequencing Analysis ソフトウェアを使用する必要があります。</td>
</tr>
<tr>
<td>データベースに対して BLAST を実行できますか？</td>
<td>Sequencing Analysis ソフトウェアで作成されたシークンスを使用してデータベースを検索するには、データから FASTA ファイルを作成します。このファイルをテキスト ビューアで開いて、BLAST クエリで検索するシークンスをカット アンド ペーストしてください。</td>
</tr>
<tr>
<td>Sequencing Analysis ソフトウェアは、サンプルベースコーリングのみを実行できますか？</td>
<td>はい。サンプルはベースコールのみの実行が可能です。</td>
</tr>
</tbody>
</table>
### Sample Manager に関する質問と回答

#### 表 A-2  Sample Manager に関する質問と回答

<table>
<thead>
<tr>
<th>質問</th>
<th>回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Manager とは？</td>
<td>Sample Manager を使用すると、データの解析、閲覧、および編集ができます。</td>
</tr>
<tr>
<td>サンプルの追加方法は？</td>
<td>「Add Samples」ダイアログ ボックスを使用して、任意のローカル ディレクトリまたはネットワーク ディレクトリからサンプル ファイルを追加します。</td>
</tr>
<tr>
<td>サンプルの削除方法は？</td>
<td>削除する項目を選択し、ツールバーの「Remove Samples」ボタンをクリックします。</td>
</tr>
<tr>
<td>CD からサンプルを追加できますか？</td>
<td>はい。ただし、ファイルは読み取り専用になります。4-15 ページの「読み取り専用サンプル ファイルの保存」を参照してください。読み取り専用属性を変更するには&lt;br&gt;1. ファイルをハード ディスクにコピーします。&lt;br&gt;2. サンプル名を選択し、右クリックして「Properties」を選択します。&lt;br&gt;3. 「Read-only」チェック ボックスの選択を解除し、「OK」をクリックします。</td>
</tr>
<tr>
<td>Sequencing Analysis ソフトウェアからエクスポートできるものは？</td>
<td>アナリシス レポート</td>
</tr>
<tr>
<td>「Display Settings」とは？</td>
<td>「Display Settings」では、塩基のフォント スタイルおよび色、エレクトロフェログラムの表示、軸スケール、アナリシス レポート上の読み取りの長さ（LOR）を設定できます。</td>
</tr>
<tr>
<td>解析の開始方法は？</td>
<td>「Analysis」&gt;「Start Analysis」を選択するか、 をクリックします。</td>
</tr>
<tr>
<td>相補鎖または元の塩基の表示機能は？</td>
<td>相補鎖または元の塩基の表示は、マネージャ内で選択したサンプルに適用されます。</td>
</tr>
</tbody>
</table>
サンプルファイルに関する質問と回答

<table>
<thead>
<tr>
<th>質問</th>
<th>回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>編集がデータに与える影響は？何が更新されますか？</td>
<td>編集はベースコーリングの結果のみに影響し、Raw Dataには影響しません。4-15ページの「サンプルファイルの保存」を参照してください。</td>
</tr>
<tr>
<td>編集済みデータと未編集データを区別する方法は？</td>
<td>編集済みの塩基は小文字、未編集の塩基は大文字で表示されます。</td>
</tr>
<tr>
<td>解析を開始すると、編集済みシーケンスはどのように処理されますか？</td>
<td>ベースコーリングが開始すると、現在の編集はすべて上書きされます。</td>
</tr>
<tr>
<td>サンプル内の不要なスペースを削除する方法は？</td>
<td>サンプル内の不要なスペースを削除するには、スペースをダブルクリックし、[Delete]または[Back Space]キーを押してください。</td>
</tr>
<tr>
<td>塩基を必要以上に削除した場合は？</td>
<td>解析を最初からやり直すか、ファイルを保存せずに閉じてください。</td>
</tr>
</tbody>
</table>
### Analysis Protocol に関する質問と回答

<table>
<thead>
<tr>
<th>質問</th>
<th>回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Protocol とは？</td>
<td>Analysis Protocol は、解析に必要な設定をすべて含んでおり、ベースコーリングおよびポストプロセシングの実行に使用されます。</td>
</tr>
<tr>
<td>ミックスベース とは？</td>
<td>2 つの塩基を含む 1 つの塩基位置</td>
</tr>
<tr>
<td>Clear Range とは？</td>
<td>5’と 3’の両末端でクオリティの低いままたはエラーが発生しやすいシークエンスを除外した後に残るシークエンスの領域です。</td>
</tr>
<tr>
<td>LOR とは？</td>
<td>LOR（読み取りの長さ）は、使用可能なクオリティの高いまたは高精度塩基の範囲で、Quality Value によって決定されます。範囲はユーザによって定義されます。</td>
</tr>
<tr>
<td>Data Collection ソフトウェアによって使用される Analysis Protocol を削除できますか？</td>
<td>はい。</td>
</tr>
</tbody>
</table>
# Quality Value（QV）に関する質問と回答

<table>
<thead>
<tr>
<th>質問</th>
<th>回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>QV とは？</td>
<td>Quality Value は、塩基読み取り精度の塩基当たりの推定値です。</td>
</tr>
</tbody>
</table>
| QV 方程式とは？ | 塩基当たりの QV は、次の式に対応するスケールで換算されます。

$$ QV = \frac{1}{\log_{256}(1 - Pe)} $$

ここで、$Pe$ はエラーの確率です。6-2 ページの「塩基当たりの Quality Value の解釈」を参照してください。 |
| 塩基を編集すると QV はどのように処理されますか？ | QV は、行った操作に応じて変更されます。

- 塩基を挿入した場合 - QV は追加されない
- 塩基を削除した場合 - QV は削除される
- 塩基を変更した場合 - QV の数値は同じだが、灰色のバーで表示される |
| QV の Display Settings を変更する方法は？ | 6-5 ページの「Quality Value 表示のカスタマイズ」を参照してください。 |
| サンプル スコアとは？ | サンプル スコアは QV から作成されます。そのサンプルの Clear Range シーケンスにおける塩基の平均 Quality Value です。 |
### アナリシス レポートに関する質問と回答

<table>
<thead>
<tr>
<th>質問</th>
<th>回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>アナリシス レポートとは？</td>
<td>アナリシス レポートには、データ解析の成功および失敗（またはそのいずれか）が表示されます。レポートは、トラブルシューティングに役立ち、レポートを利用するとデータ クオリティの評価を簡単に行うことができます。</td>
</tr>
<tr>
<td>アナリシス レポートへのアクセス方法は？</td>
<td>アナリシス レポートを開くには、「Analysis」 &gt; 「Analysis Report」を選択します。</td>
</tr>
<tr>
<td>アナリシス レポートのエクスポート方法は？</td>
<td>1. 「File」 &gt; 「Export」を選択します。 2. レポートの名前と保存場所を入力します。 3. 「Save」をクリックします。</td>
</tr>
</tbody>
</table>
### 印刷に関する質問と回答

表 A-7  印刷に関する質問と回答

<table>
<thead>
<tr>
<th>質問</th>
<th>回答</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequencing Analysis ソフトウェアで印刷できるものは？</td>
<td>サンプルビュー (Annotation, Sequence, Feature, Electropherogram, Raw Data, EPT Data) およびアナリシスレポートを印刷できます。</td>
</tr>
<tr>
<td>Sequencing Analysis ソフトウェアの推奨プリンタは？</td>
<td>推奨プリンタは、HP® 8100、4600、990cx、Epson® 980 カラー プリンタです。</td>
</tr>
<tr>
<td>印刷が途中で切れる原因は？</td>
<td>設定に合った用紙サイズを使用して、プリンタがそのサイズの用紙を使用するように設定されていることを確認してください。</td>
</tr>
<tr>
<td>自動印刷が機能しない原因は？</td>
<td>Windows でデフォルト プリンタを設定する必要があります。 Windows オペレーティング システムのマニュアルを参照してください。</td>
</tr>
<tr>
<td>1500 ポイント/パネルに相当する塩基数は？</td>
<td>~120 塩基です。</td>
</tr>
</tbody>
</table>
メニュー コマンドとツールバー ボタン

この付録では、次の項目について説明します。

メニュー フローチャート ....................................................... B-2
メニュー コマンド .............................................................. B-4
ツールバー ボタン .............................................................. B-7
メニュー フローチャート

Sequencing Analysis Software

メインメニュー

File

- Add Sample(s)
- Remove Sample(s)
- Remove All Samples
- Save Sample(s)
- Save All Samples
- Export Report
- Page Setup
- Print
- Exit

Edit

- Copy
- Select All
- Find
- Find Again
- Fill Down

View

- Sample Manager/Navigator
- Show/Hide Data Displays
- Full View
- Actual Size
- Zoom In Horizontal
- Zoom Out Horizontal
- Zoom In Vertical
- Zoom Out Vertical
- Show/Hide Original Sequence
- Show/Hide QV Bars

次ページに続く
メニュー フローチャート

前ページから続く

メインメニュー

- Tools
  - Set Clear Range
  - Reverse Complement
  - Make Matrix
  - Options
  - Change Password

- Analysis
  - Start Analysis
  - Analysis Protocol
  - Analysis Protocol Manager
  - Analysis Defaults
  - Apply Pre-Analysis Settings
  - Analysis Report
  - Display Settings

- DBSearch
  - CDS Nt Blast Search
  - Set CDS Username/Password

- Help
  - Sequencing Analysis Help
  - IUPAC Codes
  - IUPAC Diagram
  - Complement Codes
  - Quality Values Chart
  - Applied Biosystems Home Page
  - About Sequencing Analysis
メニュー コマンド

### 「File」メニュー

<table>
<thead>
<tr>
<th>コマンド</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add Sample(s) (Ctrl+I)</td>
<td>「Add Samples」ダイアログ ボックスを開きます。</td>
</tr>
<tr>
<td>Remove Sample(s) (Delete)</td>
<td>Sample Manager/Navigator から選択したサンプルを削除します。</td>
</tr>
<tr>
<td>Remove All Samples</td>
<td>Sample Manager/Navigator からサンプルを選択せずに、すべて削除します。</td>
</tr>
<tr>
<td>Save Sample(s) (Ctrl+S)</td>
<td>選択したサンプルへの未確定の変更を保存します。</td>
</tr>
<tr>
<td>Save All Sample(s) (Ctrl+Shift+S)</td>
<td>Sample Manager 内のすべてのサンプルへの未確定の変更を保存します。</td>
</tr>
<tr>
<td>Export Report</td>
<td>「Export Analysis Report」ダイアログ ボックスを開いて、レポートをタブ区切りファイルとして保存します。</td>
</tr>
<tr>
<td>Page Setup</td>
<td>「Page Setup」ダイアログ ボックスを開きます。このダイアログボックスで、印刷の設定ができます。</td>
</tr>
<tr>
<td>Print (Ctrl+P)</td>
<td>「Print」ダイアログ ボックスを開きます。このダイアログボックスで、印刷を開始できます。</td>
</tr>
<tr>
<td>Exit (Alt+F4)</td>
<td>ソフトウェアプログラムを終了します。</td>
</tr>
</tbody>
</table>

### 「Edit」メニュー

<table>
<thead>
<tr>
<th>コマンド</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy (Ctrl+C)</td>
<td>ウィンドウ内で選択した項目をクリップボードにコピーします。</td>
</tr>
<tr>
<td>Select All (Ctrl+A)</td>
<td>アクティブなサンプルウィンドウの内容全体を選択します。</td>
</tr>
<tr>
<td>Find (Ctrl+F)</td>
<td>「Electropherogram」または「Sequence」ビューで、特定の塩基または塩基の文字列を検索します。</td>
</tr>
<tr>
<td>Find Again (Ctrl+G)</td>
<td>「Electropherogram」または「Sequence」ビューで、「Find」ダイアログボックスで指定された文字列の次に出てくる場所を検索します。</td>
</tr>
<tr>
<td>Fill Down (Ctrl+D)</td>
<td>選択された一番上のフィールドの値を、同じカラム内の他の選択されたフィールドすべてにコピーします。</td>
</tr>
</tbody>
</table>

### 「View」メニュー

<table>
<thead>
<tr>
<th>コマンド</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Manager/Navigator (Ctrl+N)</td>
<td>「Sample Manager」と「Sample Navigator」のページを切り替えます。</td>
</tr>
<tr>
<td>Show/Hide Data Displays (Ctrl+U)</td>
<td>選択したサンプルデータビューを表示/非表示にします。</td>
</tr>
<tr>
<td>Full View (Ctrl+]</td>
<td>標準サイズのウィンドウ内にすべてのデータを表示します。</td>
</tr>
<tr>
<td>Actual Size (Ctrl+)</td>
<td>表示を初期デフォルトのズーム倍率に戻します。</td>
</tr>
</tbody>
</table>
メニュー コマンド

### 「View」メニュー

<table>
<thead>
<tr>
<th>コマンド</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoom In Horizontal (Ctrl+=)</td>
<td>ビューを水平方向に拡大し、より詳細に表示します。</td>
</tr>
<tr>
<td>Zoom Out Horizontal (Ctrl+Minus)</td>
<td>ビューを水平方向に縮小し、より広い領域を表示します。</td>
</tr>
<tr>
<td>Zoom In Vertical (Ctrl+Shift+=)</td>
<td>ビューを垂直方向に拡大し、より詳細に表示します。</td>
</tr>
<tr>
<td>Zoom Out Vertical (Ctrl+Shift+Minus)</td>
<td>ビューを垂直方向に縮小し、より広い領域を表示します。</td>
</tr>
<tr>
<td>Show/Hide Original Sequence (Ctrl+J)</td>
<td>「Electropherogram」ビューで、編集可能なシーケンスの上にある別の行に、元のシーケンスを表示します。</td>
</tr>
<tr>
<td>Show/Hide QV Bars (Ctrl+K)</td>
<td>サンプル Quality Value を表示 / 非表示にします。</td>
</tr>
</tbody>
</table>

### 「Tools」メニュー

<table>
<thead>
<tr>
<th>コマンド</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set Clear Range (Ctrl+Q)</td>
<td>「Set Clear Range」ダイアログ ボックスを開きます。このダイアログ ボックスでは、Clear Range の最初と最後の塩基対 (bp) を定義できます。</td>
</tr>
<tr>
<td>Reverse Complement</td>
<td>すべてのシーケンスビューでシーケンスの相補鎖を表示します。</td>
</tr>
<tr>
<td>Make Matrix</td>
<td>「Make Matrix」ダイアログ ボックスを開きます。このダイアログ ボックスでは、310 および 377 装置用のマトリックスファイルを作成できます。</td>
</tr>
<tr>
<td>Options</td>
<td>「Options」ダイアログ ボックスを開きます。このダイアログ ボックスでは、ファイル形式、印刷、ユーザ、およびオーディットトレイルのオプションを選択できます。</td>
</tr>
<tr>
<td>Change Password</td>
<td>「User Management」ダイアログ ボックスを開き、ユーザのパスワードを変更できます。</td>
</tr>
</tbody>
</table>

### 「Analysis」メニュー

<table>
<thead>
<tr>
<th>コマンド</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Analysis (Ctrl+R)</td>
<td>サンプルの解析を開始します。</td>
</tr>
<tr>
<td>Analysis Protocol (Ctrl+T)</td>
<td>「Analysis Protocol」ダイアログ ボックスを開きます。このダイアログ ボックスでは、Sample Manager 内で選択したサンプルに対して「Basecalling」、「Mixed Bases」、および「Clear Range」設定を定義する Analysis Protocol を編集できます。</td>
</tr>
<tr>
<td>Analysis Protocol Manager</td>
<td>「Analysis Protocol」ダイアログ ボックスを開きます。このダイアログ ボックスでは、Analysis Protocol の作成、編集、適用、または削除ができます。</td>
</tr>
<tr>
<td>Analysis Defaults</td>
<td>「Analysis Defaults」ダイアログ ボックスを開きます。</td>
</tr>
<tr>
<td>Apply Pre-Analysis Settings</td>
<td>元の Analysis Settings をサンプルに適用します。</td>
</tr>
<tr>
<td>Analysis Report (Ctrl+B)</td>
<td>アナリシス レポートを開きます。</td>
</tr>
<tr>
<td>Display Settings (Ctrl+Y)</td>
<td>「Display Settings」ダイアログ ボックスを開きます。</td>
</tr>
</tbody>
</table>
「Help」メニュー

「Help」メニューには、次のコマンドがあります。

<table>
<thead>
<tr>
<th>コマンド</th>
<th>説明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequencing Analysis Help ([F1])</td>
<td>『ABI PRISM® Seqencing Analysis Software v5.1 User Guide』のPDFファイルを開きます。</td>
</tr>
<tr>
<td>IUPAC Codes</td>
<td>単一および複数塩基のコードの表を含む表示ボックスを開きます。</td>
</tr>
<tr>
<td>IUPAC Diagram</td>
<td>IUPAC ダイアグラムを含む表示ボックスを開きます。</td>
</tr>
<tr>
<td>Complement Codes</td>
<td>1文字塩基とその相補鎖の表を含む表示ボックスを開きます。</td>
</tr>
<tr>
<td>IUPAC Codes</td>
<td>Quality Value の表を含む表示ボックスを開きます。</td>
</tr>
<tr>
<td>Applied Biosystems Home Page</td>
<td>Applied Biosystems の Web サイトにあるホームページへのリンクを開きます。</td>
</tr>
<tr>
<td>About Sequencing Analysis</td>
<td>「About Sequencing Analysis」ダイアログボックスを開きます。</td>
</tr>
</tbody>
</table>
ツールバー ボタン

よく使用されるコマンドは、メイン ウィンドウのツールバーからすばやくアクセスできます。これらは必要な場合のみアクティブになっています。

Add Sample(s) Ctrl+I
「Add Samples」 ダイアログ ボックスを開きます。

Remove Sample(s) Delete
Sample Manager/Navigator から選択したサンプルを削除します。

Save Sample(s) Ctrl+S
選択したサンプルへの変更を保存します。

Print Ctrl+P
選択したビューとアナリシス レポートを印刷します。

Copy Ctrl+C
Save Sample(s) Ctrl+S
選択したサンプルへの変更を保存します。

Start Analysis Ctrl+R
選択した解析、ポスト プロセッシング、および印刷タスクを開始します。

View Sequencing Analysis Protocol Ctrl+T
選択したサンプルの Анаリシス Protocol を開きます。

Analysis Report Ctrl+B
アナリシス レポートを作成および表示します。

Applied Biosystems Home Page
Applied Biosystems の Web ページにリンクします。

Show/Hide QV Ctrl+K
サンプルの Quality Value の表示のオン / オフを切り替えます。

Toggle Ctrl+N
「Sample Navigator」と「Sample Manager」のビューを切り替えます。

Show/Hide original sequence Ctrl+U
選択したシーケンスファイル データを表示します。

Full View Ctrl+[ 標準サイズのウィンドウ内にすべてのデータを表示します。

Zoom In Horizontal Ctrl+= ビューを水平方向に拡大します。

Actual Size Ctrl+U
表示を初期デフォルトのズーム倍率に戻します。

Zoom Out Vertical Ctrl+Shift= ビューを垂直方向に拡大します。

Full View Ctrl+[ 標準サイズのウィンドウ内にすべてのデータを表示します。

Zoom Out Horizontal Ctrl+Minus ビューを水平方向に縮小します。

Display Settings Ctrl+Y 「Displays Settings」 ダイアログ ボックスを開きます。
付録B メニュー コマンドとツールバー ボタン
この付録では、次の項目について説明します。

- ABI PRISM 310 ジェネティック アナライザ ファイル ........................................ C-2
- ABI PRISM 377 DNA Sequencer ファイル ................................. C-4
- ABI PRISM 3100 ジェネティック アナライザ ファイル .......................... C-5
- ABI PRISM 3100-Avant ジェネティック アナライザ ファイル .................. C-7
- ABI PRISM 3700 DNA Analyzer ファイル ........................................ C-9
- Applied Biosystems 3730/3730xl DNA Analyzer ファイル ................ C-10
### ABI PRISM 310 ジェネティック アナライザ ファイル

注：キャビラリ アレイ長 47 cm = リード長 36 cm
キャビラリ アレイ長 61 cm = リード長 50 cm

表 C-1 ダイ ターミネータ ケミストリに使用される 310 Basecaller および DyeSet/Primer ファイル

<table>
<thead>
<tr>
<th>DNA シーケンシング ケミストリ</th>
<th>キャビラリ アレイ長 (cm)</th>
<th>Basecaller</th>
<th>DyeSet/Primer</th>
</tr>
</thead>
</table>
| **ABI PRISM® BigDye® Terminator**
  v1.0 および v1.1 | 47 | KB.bcp | KB_310_POP4_BDTv1_36Rapid.mob |
| | 47 | KB.bcp | KB_310_POP4_BDTv1_36Std.mob |
| | 61 | KB.bcp | KB_310_POP6_BDTv1_36Rapid.mob |
| | 61 | KB.bcp | KB_310_POP6_BDTv1_50Std.mob |
| **ABI PRISM® BigDye® Terminator**
  v3.0 および v3.1 | 47 | KB.bcp | KB_310_POP4_BDTv3_36Rapid.mob |
| | 47 | KB.bcp | KB_310_POP4_BDTv3_36Std.mob |
| | 61 | KB.bcp | KB_310_POP6_BDTv3_36Rapid.mob |
| | 61 | KB.bcp | KB_310_POP6_BDTv3_50Std.mob |

### ABI Basecalling

| ABI PRISM® BigDye® Terminator
  v1.0 および v1.1 | 47 | Basecaller-310POP4.bcp | DT310POP4(BD)v2.mob |
| 47 | Basecaller-310POP6.bcp | DT310POP6(BD).mob |
| 61 | Basecaller-310POP6.bcp | DT310POP6(BD-LR)v3.mob |
| ABI PRISM® dRhodamine Terminator | 47 | Basecaller-310POP4.bcp | DT310POP4(dRhod)v1.mob |
| 47 | Basecaller-310POP6.bcp | DT310POP6(dRhod)v2.mob |
| 61 | Basecaller-310POP6.bcp | DT310POP6(BDv3)v2.mob |
| ABI PRISM® BigDye® Terminator
  v3.0 および v3.1 | 47 | Basecaller-310POP4.bcp | DT310POP4(BDv3)v2.mob |
| 47 | Basecaller-310POP6.bcp | DT310POP6(BDv3)v2.mob |
| 61 | Basecaller-310POP6.bcp | DT310POP6(BDv3)v2.mob |
表 C-2 ダイ ブライマー ケミストリに使用される 310 Basecaller および DyeSet/Primer ファイル

<table>
<thead>
<tr>
<th>DNA シーケンシング ケミストリ</th>
<th>キャピラリ アレイ長（cm）</th>
<th>Basecaller</th>
<th>DyeSet/Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI PRISM® BigDye® Primer</td>
<td>47</td>
<td>Basecaller-310POP4.bcp</td>
<td>DP310POP4(BD-21M13)v1.mob</td>
</tr>
<tr>
<td>v1.0 および v1.1</td>
<td></td>
<td></td>
<td>DP310POP4(BD-M13Rev)v1.mob</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>Basecaller-310POP6.bcp</td>
<td>DP310POP6(BD-21M13)v1.mob</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DP310POP6(BD-M13Rev)v1.mob</td>
</tr>
<tr>
<td>ABI PRISM BigDye® Primer v3.0</td>
<td>47</td>
<td>Basecaller-310POP4.bcp</td>
<td>DP310POP4(BDv3-21M13)v1.mob</td>
</tr>
<tr>
<td>および v3.1</td>
<td></td>
<td></td>
<td>DP310POP4(BDv3-M13Rev)v1.mob</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>Basecaller-310POP6.bcp</td>
<td>DP310POP6(BDv3-21M13)v1.mob</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DP310POP6(BDv3-M13Rev)v1.mob</td>
</tr>
</tbody>
</table>
### ABI PRISM 377 DNA Sequencer ファイル

表 C-3 ダイ ターミネータ ケミストリに使用される 377 Basecaller および DyeSet/Primer ファイル

<table>
<thead>
<tr>
<th>DNA シーケンシング ケミストリ</th>
<th>WTR (cm)/ スキャン レート (スキャン/時)</th>
<th>Basecaller</th>
<th>DyeSet/Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI Basecalling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI PRISM BigDye Terminator v1.0 および v1.1</td>
<td>36/2400</td>
<td>Basecaller-377.bcp</td>
<td>DT377(BD).mob</td>
</tr>
<tr>
<td>ABI PRISM dGTP BigDye Terminator</td>
<td>36 &amp; 48/1200</td>
<td>Basecaller-377LR.bcp</td>
<td></td>
</tr>
<tr>
<td>ABI PRISM dRhodamine Terminator</td>
<td>36/2400</td>
<td>Basecaller-377.bcp</td>
<td>DT377(dRhod).mob</td>
</tr>
<tr>
<td>ABI PRISM BigDye Terminator v3.0 および 3.1</td>
<td>36 &amp; 48/1200</td>
<td>Basecaller-377LR.bcp</td>
<td></td>
</tr>
<tr>
<td>ABI PRISM dGTP BigDye v3.0 Terminator</td>
<td>36 &amp; 48/1200</td>
<td>Basecaller-377LR.bcp</td>
<td>DT377LR(BDv3)v1.mob</td>
</tr>
</tbody>
</table>

表 C-4 ダイ プライマー ケミストリに使用される 377 Basecaller および DyeSet/Primer ファイル

<table>
<thead>
<tr>
<th>DNA シーケンシング ケミストリ</th>
<th>WTR (cm)/ スキャン レート (スキャン/時)</th>
<th>Basecaller</th>
<th>DyeSet/Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI Basecalling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI PRISM BigDye Primer v1.0 および v1.1</td>
<td>36/2400</td>
<td>Basecaller-377.bcp</td>
<td>DP377-5%LR(BD-21M13).mob</td>
</tr>
<tr>
<td>ABI PRISM BigDye Primer v3.0 および 3.1</td>
<td>36/2400</td>
<td>Basecaller-377.bcp</td>
<td>DP377(BDv3-21M13)v1.mob</td>
</tr>
<tr>
<td>ABI PRISM BigDye Primer v1.1</td>
<td>36 &amp; 48/1200</td>
<td>Basecaller-377LR.bcp</td>
<td>DP377-5%LR(BD-M13Rev).mob,</td>
</tr>
<tr>
<td>ABI PRISM BigDye Primer v3.0</td>
<td>36 &amp; 48/1200</td>
<td>Basecaller-377LR.bcp</td>
<td>DP377(BDv3-M13Rev)v1.mob</td>
</tr>
<tr>
<td>DNA シーケンス/プライマー</td>
<td>キャピラリー長 (cm)</td>
<td>Basecaller</td>
<td>DyeSet/Primer</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>ABI PRISM BigDye Terminator v1.0 および v1.1</td>
<td>36: ultra rapid</td>
<td>KB.bcp</td>
<td>KB_3100_POP4_BDTv1.mob</td>
</tr>
<tr>
<td></td>
<td>50: std read</td>
<td>KB.bcp</td>
<td>KB_3100_POP4_BDTv1.mob</td>
</tr>
<tr>
<td></td>
<td>80: long read</td>
<td>KB.bcp</td>
<td>KB_3100_POP4_BDTv1.mob</td>
</tr>
<tr>
<td></td>
<td>36: rapid read</td>
<td>KB.bcp</td>
<td>KB_3100_POP6_BDTv3.mob</td>
</tr>
<tr>
<td></td>
<td>50: std read</td>
<td>KB.bcp</td>
<td>KB_3100_POP6_BDTv3.mob</td>
</tr>
<tr>
<td></td>
<td>80: long read</td>
<td>KB.bcp</td>
<td>KB_3100_POP6_BDTv3.mob</td>
</tr>
<tr>
<td></td>
<td>36: rapid read</td>
<td>KB.bcp</td>
<td>DT3100POP4UR.BDP1.mob</td>
</tr>
<tr>
<td></td>
<td>50: std read</td>
<td>KB.bcp</td>
<td>DT3100POP4UR.BDP1.mob</td>
</tr>
<tr>
<td></td>
<td>80: long read</td>
<td>KB.bcp</td>
<td>DT3100POP4UR.BDP1.mob</td>
</tr>
<tr>
<td></td>
<td>36: rapid read</td>
<td>KB.bcp</td>
<td>DT3100POP6SR.BDP1.mob</td>
</tr>
<tr>
<td></td>
<td>50: std read</td>
<td>KB.bcp</td>
<td>DT3100POP6SR.BDP1.mob</td>
</tr>
<tr>
<td></td>
<td>80: long read</td>
<td>KB.bcp</td>
<td>DT3100POP6SR.BDP1.mob</td>
</tr>
</tbody>
</table>

### Notes
- **ABI PRISM 3100 ジェネティック アナライザ ファイル**
- **DNA シーケンス/プライマー**
- **キャピラリー長 (cm)**
- **Basecaller**
- **DyeSet/Primer**
- **Basecalling**
表 C-5 ダイ ターミネータ ケミストリに使用される 3100 Basecaller および DyeSet/Primer ファイル（続き）

<table>
<thead>
<tr>
<th>DNA シーケンシング ケミストリ</th>
<th>キャピラリ アレイ長（cm）</th>
<th>Basecaller</th>
<th>DyeSet/Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI PRISM dRhodamine Terminator</td>
<td>36: ultra rapid</td>
<td>Basecaller-3100POP4UR.bcp</td>
<td>DT3100POP4(dRhod)v2.mob</td>
</tr>
<tr>
<td></td>
<td>80: long read</td>
<td>Basecaller-3100POP4_80cmv3.bcp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36: rapid read</td>
<td>Basecaller-3100POP6RRv2.bcp</td>
<td>DT3100POP6(dRhod)v2.mob</td>
</tr>
<tr>
<td></td>
<td>50: std read</td>
<td>Basecaller-3100POP6SR.bcp</td>
<td></td>
</tr>
</tbody>
</table>

表 C-6 ダイ プライマー ケミストリに使用される 3100 Basecaller および DyeSet/Primer ファイル

<table>
<thead>
<tr>
<th>DNA シーケンシング ケミストリ</th>
<th>キャピラリ アレイ長（cm）</th>
<th>Basecaller</th>
<th>DyeSet/Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI Basecalling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI PRISM BigDye Primer v1.0および v1.1</td>
<td>36: rapid read</td>
<td>Basecaller-3100POP6RRv2.bcp</td>
<td>DP3100POP6(BD-21M13)v1.mob</td>
</tr>
<tr>
<td></td>
<td>50: std read</td>
<td>Basecaller-3100POP6SR.bcp</td>
<td>DP3100POP6(BD-M13Rev)v1.mob</td>
</tr>
<tr>
<td>ABI PRISM BigDye Primer v3.0および v3.1</td>
<td>36: rapid read</td>
<td>Basecaller-3100POP6RRv2.bcp</td>
<td>DP3100POP6(BDv3-21M13)v1.mob</td>
</tr>
<tr>
<td></td>
<td>50: std read</td>
<td>Basecaller-3100POP6SR.bcp</td>
<td>DP3100POP6(BDv3-M13Rev)v1.mob</td>
</tr>
<tr>
<td>ABI PRISM BigDye v3 Primer（すべてのプライマー）</td>
<td>36: ultra rapid</td>
<td>Basecaller-3100POP4UR.bcp</td>
<td>DP3100POP4(BDv3)v1.mob</td>
</tr>
<tr>
<td></td>
<td>80: long read</td>
<td>Basecaller-3100POP4_80cmv3.bcp</td>
<td></td>
</tr>
</tbody>
</table>
### ABI PRISM 3100-Avant ジェネティック アナライザ ファイル

表 C-7 ダイ ターミネータ ケミストリに使用される 3100-Avant Basecaller および DyeSet/Primer ファイル

<table>
<thead>
<tr>
<th>DNA シーケンシング ケミストリ</th>
<th>キャピラリ アレイ長 (cm)</th>
<th>Basecaller</th>
<th>DyeSet/Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>KB Basecalling</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI PRISM BigDye Terminator</td>
<td>36: ultra rapid</td>
<td>KB.bcp</td>
<td>KB_3100_POP4_BDTv1.mob</td>
</tr>
<tr>
<td>v1.0 および v1.1</td>
<td>50: std read</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80: long read</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36: rapid read</td>
<td>KB.bcp</td>
<td>KB_3100_POP6_BDTv1.mob</td>
</tr>
<tr>
<td></td>
<td>50: std read</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI PRISM BigDye Terminator</td>
<td>36: ultra rapid</td>
<td>KB.bcp</td>
<td>KB_3100_POP4_BDTv3_.mob</td>
</tr>
<tr>
<td>v3.0 および v3.1</td>
<td>50: std read</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80: long read</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36: rapid read</td>
<td>KB.bcp</td>
<td>KB_3100_POP6_BDTv3.mob</td>
</tr>
<tr>
<td></td>
<td>50: std read</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>ABI Basecalling</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI PRISM BigDye Terminator</td>
<td>36: ultra rapid</td>
<td>Basecaller-3100APOP4UR.bcp</td>
<td>DT3100POP4LR(BD)v1.mob</td>
</tr>
<tr>
<td>v1.0 および v1.1</td>
<td>80: long read</td>
<td>Basecaller-3100APOP4_80cmv3.bcp</td>
<td>DT3100POP6(BD)v2.mob</td>
</tr>
<tr>
<td></td>
<td>36: rapid read</td>
<td>Basecaller-3100APOP6RRv2.bcp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50: std run</td>
<td>Basecaller-3100APOP6SR.bcp</td>
<td></td>
</tr>
<tr>
<td>ABI PRISM BigDye Terminator</td>
<td>36: ultra rapid</td>
<td>Basecaller-3100APOP4UR.bcp</td>
<td>DT3100POP4(BDv3)v1.mob</td>
</tr>
<tr>
<td>v3.0 および 3.1</td>
<td>80: long read</td>
<td>Basecaller-3100APOP4_80cmv3.bcp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36: rapid read</td>
<td>Basecaller-3100APOP6RRv2.bcp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA Sequencing Chemistry</td>
<td>Capillary Array (cm)</td>
<td>Basecaller</td>
<td>DyeSet/Primer</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
<td>------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ABI Prism dRhodamine Terminator</td>
<td>36: ultra rapid</td>
<td>Basecaller-3100APOP4UR.bcp</td>
<td>DT3100POP4(dRhod)v2.mob</td>
</tr>
<tr>
<td></td>
<td>80: long read</td>
<td>Basecaller-3100APOP4_80cmv3.bcp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36: rapid read</td>
<td>Basecaller-3100APOP6RRv2.bcp</td>
<td>DT3100POP6(dRhod)v2.mob</td>
</tr>
<tr>
<td></td>
<td>50: std run</td>
<td>Basecaller-3100APOP6SR.bcp</td>
<td></td>
</tr>
</tbody>
</table>
### ABI PRISM 3700 DNA Analyzer ファイル

#### 表 C-8 ダイ ターミネータ ケミストリに使用される 3700 Basecaller および DyeSet/Primer ファイル

<table>
<thead>
<tr>
<th>DNA シーケンシング ケミストリ</th>
<th>キャピラリ アレイ長 (cm)</th>
<th>Basecaller</th>
<th>DyeSet/Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI PRISM BigDye Terminator v1.0 および 1.1</td>
<td>50</td>
<td>Basecaller-3700POP6.bcp</td>
<td>DT3700POP6(BD)v5.mob</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basecaller-3700POP5LR.bcp</td>
</tr>
<tr>
<td>ABI PRISM BigDye Terminator v3.0 および 3.1</td>
<td>50</td>
<td>Basecaller-3700POP6.bcp</td>
<td>DT3700POP6(BDv3)v1.mob</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basecaller-3700POP5LR.bcp</td>
</tr>
<tr>
<td>ABI PRISM dRhodamine Terminator</td>
<td>50</td>
<td>Basecaller-3700POP6.bcp</td>
<td>DT3700POP6(dRhod)v3.mob</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basecaller-3700POP5LR.bcp</td>
</tr>
</tbody>
</table>

#### 表 C-9 ダイ プライマー ケミストリに使用される 3700 Basecaller および DyeSet/Primer ファイル

<table>
<thead>
<tr>
<th>DNA シーケンシング ケミストリ</th>
<th>キャピラリ アレイ長 (cm)</th>
<th>Basecaller</th>
<th>DyeSet/Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI PRISM BigDye Primer v1.0 および v1.1</td>
<td>50</td>
<td>Basecaller-3700POP6.bcp</td>
<td>DP3700POP6(BD-21M13)v3.mob</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DP3700POP6(BD-M13Rev)v2.mob</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basecaller-3700POP5LR.bcp</td>
</tr>
<tr>
<td>ABI PRISM BigDye Primer v3.0 および v3.1</td>
<td>50</td>
<td>Basecaller-3700POP6.bcp</td>
<td>DP3700POP6(BDv3-21M13)v1.mob</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DP3700POP6(BDv3-M13Rev)v1.mob</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Basecaller-3700POP5LR.bcp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DP3700POP5(BDv3-M13Rev)v1.mob</td>
</tr>
</tbody>
</table>
Applied Biosystems 3730/3730x/ DNA Analyzer ファイル

表 C-10 ダイ ターミネータ ケミストリに使用される 3730/3730x/ Basecaller および DyeSet/Primer ファイル

<table>
<thead>
<tr>
<th>DNA シーケンシング ケミストリ</th>
<th>キャピラリ アレイ長（cm）</th>
<th>Basecaller</th>
<th>DyeSet/Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KB Basecalling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI PRISM BigDye v3.0</td>
<td>すべての長さ</td>
<td>KB.bcp</td>
<td>KB_3730_POP7_BDTv3.mob</td>
</tr>
<tr>
<td>Terminator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI PRISM BigDye Terminator</td>
<td>すべての長さ</td>
<td>KB.bcp</td>
<td>KB_3730_POP7_BDTv1.mob</td>
</tr>
<tr>
<td></td>
<td>ABI Basecalling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABI PRISM BigDye Terminator</td>
<td>36: rapid read</td>
<td>Basecaller-3730POP7RR.bcp</td>
<td>DT3730POP7(BD).mob</td>
</tr>
<tr>
<td>v1.0 および v1.1</td>
<td>36: std read</td>
<td>Basecaller-3730POP7SR.bcp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50: long read</td>
<td>Basecaller-3730POP7LR.bcp</td>
<td></td>
</tr>
<tr>
<td>ABI PRISM BigDye Terminator</td>
<td>36: rapid read</td>
<td>Basecaller-3730POP7RR.bcp</td>
<td>DT3730POP7(BDv3).mob</td>
</tr>
<tr>
<td>v3.0 および v3.1</td>
<td>36: std read</td>
<td>Basecaller-3730POP7SR.bcp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50: long read</td>
<td>Basecaller-3730POP7LR.bcp</td>
<td></td>
</tr>
</tbody>
</table>
ユーザの権限

この付録では、次の項目について説明します。
ユーザ権限の表 .................................................. D-2
ユーザ権限の表

この付録では、3つのカテゴリのユーザ、アドミニストレータ（Administrator）、サイエンティスト（Scientist）、およびアナリスト（Analyst）が ABI PRISM® Seqencing Analysis ソフトウェア v5.1 を使用する場合の権限のリストを示します。

表 D-1 アドミニストレータ レベルのアクセス

<table>
<thead>
<tr>
<th>Admin 専用アクセス</th>
<th>1</th>
<th>ユーザ アカウントを作成する</th>
<th>許可</th>
<th>無許可</th>
<th>無許可</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>ユーザ アカウントをエクスポート/インポートする</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>タイムアウト機能をオン/オフにする</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>オーディット トレール機能をオン/オフにする</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ユーザを使用不可能にする</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 D-2 アドミニストレータおよびサイエンティスト レベルのアクセス

<table>
<thead>
<tr>
<th>Analysis Protocol および設定</th>
<th>1</th>
<th>Analysis Protocol を作成する</th>
<th>許可</th>
<th>許可</th>
<th>無許可</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>既存の Analysis Protocol を編集する</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Analysis Protocol をサンプルセットに適用する</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Analysis Protocol を削除する</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Analysis Settings または Analysis Defaults で Clear Range の定義を設定する</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>「Display Settings」を編集する</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Analysis Defaults を使用して Analysis Protocol を編集する</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>サンプルごとの Analysis Protocol を編集する</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>「Save as」を使用して Analysis Protocol を新規作成する</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表 D-3 アドミニストレータ、サイエンティスト、およびアナリスト レベルのアクセス

<table>
<thead>
<tr>
<th>レポート</th>
<th>Admin</th>
<th>Scientist</th>
<th>Analyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>アナリシス レポートを表示する</td>
<td>許可</td>
<td>許可</td>
</tr>
<tr>
<td>2</td>
<td>基本データに戻るリンクが有効になったレポートを表示する</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>レポートをカスタマイズする</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>レポートをエクスポートする</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>レポートを印刷する</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Manager</td>
<td>6</td>
<td>ファイルシステム内でデータを検索する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Sample Manager にサンプルを追加する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Sample Manager でサンプルを削除する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>サンプルファイルビューを印刷する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Sample Manager で Basecaller とモビリティファイルを変更する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>エレクトロフェログラムまたはシークエンスビュー内で塩基を挿入または削除する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>エレクトロフェログラムまたはシークエンスビュー内で塩基を変更する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>エレクトロフェログラムまたはシークエンスビュー内でテキストを検索する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>サンプル名を編集する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>「Sample Navigator」ビュー内でデータを表示する</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>任意のシークエンスデータ内でテキスト文字列を検索する</td>
<td></td>
</tr>
<tr>
<td>Sequencing Analysis</td>
<td>17</td>
<td>Sequencing Analysisを開く</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>Sequencing Analysisを終了する</td>
<td></td>
</tr>
</tbody>
</table>
付録D ユーザの権限
キー コード

この付録では、Applied Biosystems Sequencing Analysis ソフトウェア v5.1 で使用されるコードの翻訳について説明します。

この付録では、次の項目について説明します。

翻訳表 .................................................. E-2
翻訳表

はじめに このセクションでは、次の翻訳表を説明します。

- IUPAC/IUB コード
- 相補鎖
- 普遍的遺伝子コード (Universal Genetic Code)
- アミノ酸の略語

注：これらの表は、ソフトウェアのメインウィンドウにある「Help」メニューから表示できます。

IUPAC/IUB コード 次の表に、Sequencing Analysis ソフトウェアで使用される IUPAC/IUB コードの翻訳を示します。

<table>
<thead>
<tr>
<th>コード</th>
<th>翻訳</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenosine</td>
</tr>
<tr>
<td>C</td>
<td>Cytidine</td>
</tr>
<tr>
<td>G</td>
<td>Guanine</td>
</tr>
<tr>
<td>T</td>
<td>Thymidine</td>
</tr>
<tr>
<td>B</td>
<td>C、G、またはT</td>
</tr>
<tr>
<td>D</td>
<td>A、G、またはT</td>
</tr>
<tr>
<td>H</td>
<td>A、C、またはT</td>
</tr>
<tr>
<td>R</td>
<td>AまたはG (puRine)</td>
</tr>
<tr>
<td>Y</td>
<td>CまたはT (pYrimidine)</td>
</tr>
<tr>
<td>K</td>
<td>GまたはT (Keto)</td>
</tr>
<tr>
<td>M</td>
<td>AまたはC (aMino)</td>
</tr>
<tr>
<td>S</td>
<td>GまたはC（強い3本の水素結合）</td>
</tr>
<tr>
<td>W</td>
<td>AまたはT（弱い2本の水素結合）</td>
</tr>
<tr>
<td>N</td>
<td>任意の塩基</td>
</tr>
<tr>
<td>V</td>
<td>A、C、またはG</td>
</tr>
</tbody>
</table>
相補鎖
次の表に、参照用の相補鎖を示します。

<table>
<thead>
<tr>
<th>A</th>
<th>T</th>
<th>S</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>G</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>G</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>A</td>
<td>B</td>
<td>V</td>
</tr>
<tr>
<td>R</td>
<td>Y</td>
<td>H</td>
<td>D</td>
</tr>
<tr>
<td>Y</td>
<td>R</td>
<td>V</td>
<td>B</td>
</tr>
<tr>
<td>K</td>
<td>M</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>M</td>
<td>K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

普遍的遺伝子コード
次の表に、Sequencing Analysis ソフトウェアで使用される普遍的遺伝子コードを示します。

<table>
<thead>
<tr>
<th>第 1 塩基（5' 末端）</th>
<th>第 2 塩基</th>
<th>第 3 塩基（3' 末端）</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Tyr</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>OCH</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>AMB</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>His</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>His</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Gln</td>
</tr>
<tr>
<td>Leu</td>
<td>Pro</td>
<td>Gln</td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Asn</td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Asn</td>
</tr>
<tr>
<td>Ile</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td>Met</td>
<td>Thr</td>
<td>Lys</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Asp</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Asp</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Glu</td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Glu</td>
</tr>
</tbody>
</table>

停止コード：AMBer、OCHer、OPA
### アミノ酸の略語
次の表に、アミノ酸の略語を示します。

<table>
<thead>
<tr>
<th>アミノ酸</th>
<th>3文字</th>
<th>1文字</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanine</td>
<td>Ala</td>
<td>A</td>
</tr>
<tr>
<td>Arginine</td>
<td>Arg</td>
<td>R</td>
</tr>
<tr>
<td>Asparagine</td>
<td>Asn</td>
<td>N</td>
</tr>
<tr>
<td>Aspartic Acid</td>
<td>Asp</td>
<td>D</td>
</tr>
<tr>
<td>Cysteine</td>
<td>Cys</td>
<td>C</td>
</tr>
<tr>
<td>Glutamic Acid</td>
<td>Glu</td>
<td>E</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Gln</td>
<td>Q</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly</td>
<td>G</td>
</tr>
<tr>
<td>Histidine</td>
<td>His</td>
<td>H</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Ile</td>
<td>I</td>
</tr>
<tr>
<td>Leucine</td>
<td>Leu</td>
<td>L</td>
</tr>
<tr>
<td>Lysine</td>
<td>Lys</td>
<td>K</td>
</tr>
<tr>
<td>Methionine</td>
<td>Met</td>
<td>M</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Phe</td>
<td>F</td>
</tr>
<tr>
<td>Proline</td>
<td>Pro</td>
<td>P</td>
</tr>
<tr>
<td>Serine</td>
<td>Ser</td>
<td>S</td>
</tr>
<tr>
<td>Threonine</td>
<td>Thr</td>
<td>T</td>
</tr>
<tr>
<td>tryptophan</td>
<td>Trp</td>
<td>W</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>Tyr</td>
<td>Y</td>
</tr>
<tr>
<td>Valine</td>
<td>Val</td>
<td>V</td>
</tr>
<tr>
<td>Any Amino Acid</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Software Warranty Information

この付録では、次の項目について説明します。

Computer Configuration ......................................................... F-2
Limited Product Warranty ......................................................... F-2
Computer Configuration

Applied Biosystems supplies or recommends certain configurations of computer hardware, software, and peripherals for use with its instrumentation. Applied Biosystems reserves the right to decline support for or impose extra charges for supporting nonstandard computer configurations or components that have not been supplied or recommended by Applied Biosystems. Applied Biosystems also reserves the right to require that computer hardware and software be restored to the standard configuration prior to providing service or technical support. For systems that have built-in computers or processing units, installing unauthorized hardware or software may void the Warranty or Service Plan.

Limited Product Warranty

Limited Warranty

Applied Biosystems warrants that for a period of ninety (90) days from the date the warranty period begins, its Applied Biosystems DNA Sequencing Analysis Software will perform substantially in accordance with the functions and features described in its accompanying documentation when properly installed on the instrument system for which it is designated, and that for a period of ninety (90) days from the date the warranty period begins, the tapes, diskettes, or other media bearing the software product will be free of defects in materials and workmanship under normal use. If buyer believes that it has discovered a failure of the software to satisfy the foregoing warranty, and if buyer notifies Applied Biosystems of such failure in writing during the ninety (90) day warranty period, and if Applied Biosystems is able to reliably reproduce such failure, then Applied Biosystems, at its sole option, will either (i) provide any software corrections or “bug-fixes” of the identified failure, if and when they become commercially available, to buyer free of charge, or (ii) notify buyer that Applied Biosystems will accept a return of the software from the buyer and, upon such return and removal of the software from buyer's systems, terminate the license to use the software and refund the buyer's purchase price for the software. If there is a defect in the media covered by the above warranty and the media is returned to Applied Biosystems within the ninety (90) day warranty period, Applied Biosystems will replace the defective media. Applied Biosystems does not warrant that the software will meet buyer's requirements or conform exactly to its documentation, or that operation of the software will be uninterrupted or error free.

Warranty Period

Effective Date

Any applicable warranty period under these sections begins on the earlier of the date of installation or ninety (90) days from the date of shipment for software installed by Applied Biosystems personnel. For all software installed by the buyer or anyone other than Applied Biosystems, the applicable warranty period begins the date the software is delivered to the buyer.

Warranty Claims

Warranty claims must be made within the applicable warranty period.
Limited Product Warranty

Warranty Exceptions

The above warranties do not apply to defects resulting from misuse, neglect, or accident, including without limitation: operation outside of the environmental or use specifications, or not in conformance with the instructions for the instrument system, software, or accessories; improper or inadequate maintenance by the user; installation of software or interfacing, or use in combination with software or products, not supplied or authorized by Applied Biosystems; and modification or repair of the product not authorized by Applied Biosystems.

THE FOREGOING PROVISIONS SET FORTH APPLIED BIOSYSTEMS' SOLE AND EXCLUSIVE REPRESENTATIONS, WARRANTIES, AND OBLIGATIONS WITH RESPECT TO ITS PRODUCTS, AND APPLIED BIOSYSTEMS MAKES NO OTHER WARRANTY OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, INCLUDING WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WHETHER ARISING FROM A STATUTE OR OTHERWISE IN LAW OR FROM A COURSE OF DEALING OR USAGE OF TRADE, ALL OF WHICH ARE EXPRESSLY DISCLAIMED.

Warranty Limitations

THE REMEDIES PROVIDED HEREIN ARE THE BUYER'S SOLE AND EXCLUSIVE REMEDIES. WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, IN NO EVENT SHALL APPLIED BIOSYSTEMS BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE (INCLUDING WITHOUT LIMITATION ANY TRADE PRACTICE, UNFAIR COMPETITION, OR OTHER STATUTE OF SIMILAR IMPORT) OR ON ANY OTHER BASIS, FOR DIRECT, INDIRECT, PUNITIVE, INCIDENTAL, MULTIPLE, CONSEQUENTIAL, OR SPECIAL DAMAGES SUSTAINED BY THE BUYER OR ANY OTHER PERSON OR ENTITY, WHETHER OR NOT FORESEEABLE AND WHETHER OR NOT APPLIED BIOSYSTEMS IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INCLUDING WITHOUT LIMITATION, DAMAGES ARISING FROM OR RELATED TO LOSS OF USE, LOSS OF DATA, FAILURE OR INTERRUPTION IN THE OPERATION OF ANY EQUIPMENT OR SOFTWARE, DELAY IN REPAIR OR REPLACEMENT, OR FOR LOSS OF REVENUE OR PROFITS, LOSS OF GOOD WILL, LOSS OF BUSINESS, OR OTHER FINANCIAL LOSS OR PERSONAL INJURY OR PROPERTY DAMAGE.

NO AGENT, EMPLOYEE, OR REPRESENTATIVE OF APPLIED BIOSYSTEMS HAS ANY AUTHORITY TO MODIFY THE TERMS OF THIS LIMITED WARRANTY STATEMENT OR TO BIND APPLIED BIOSYSTEMS TO ANY AFFIRMATION, REPRESENTATION, OR WARRANTY CONCERNING THE PRODUCT THAT IS NOT CONTAINED IN THIS LIMITED WARRANTY STATEMENT, AND ANY SUCH MODIFICATION, AFFIRMATION, REPRESENTATION, OR WARRANTY MADE BY ANY AGENT, EMPLOYEE, OR REPRESENTATIVE OF APPLIED BIOSYSTEMS WILL NOT BE BINDING ON APPLIED BIOSYSTEMS UNLESS IN A WRITING SIGNED BY AN EXECUTIVE OFFICER OF APPLIED BIOSYSTEMS.

THIS WARRANTY IS LIMITED TO THE BUYER OF THE PRODUCT FROM APPLIED BIOSYSTEMS AND IS NOT TRANSFERABLE.

Some countries or jurisdictions limit the scope of or preclude limitations or exclusion of warranties, of liability, such as liability for gross negligence or willful misconduct, or of remedies or damages, as or to the extent set forth above. In such countries and jurisdictions, the limitation or exclusion of warranties, liability, remedies or damages set forth above shall apply to the fullest extent permitted by law, and shall not apply to the extent prohibited by law.
用語集

この用語集では、『Applied Biosystems DNA シーケンシング解析 ソフトウェア v5.1 ユーザーガイド』で使用される用語について説明します。ここで定義されていない用語については、索引を調べて、このマニュアルの他の箇所での説明を参照してください。

Analysis Defaults
Analysis Defaults には、データプロセッシング パラメータの設定（ベースコーリング、ポストプロセッシング、印刷）、ファイル形式の設定（.seq、.scf、.phd.1）、および Analysis Protocol が含まれています。含まれていない場合のみ、Analysis Protocol はサンプルに割り当てられます。

Analysis Protocol
Analysis Protocol は、解析に必要な設定をすべて含んでおり、ベースコーリングおよびポストプロセッシングの実行に使用されます。プロトコールはサンプルファイルに保存されます。Analysis Protocol は、Sequencing Analysis ソフトウェアの旧バージョンで使用されたプリファレンス設定をすべて置換します。

Basecaller
Basecaller は、解析中にシーケンスの塩基を決定するアルゴリズムです。
Basecaller には、次の 2 つのタイプがあります。

KB – ミックスベースまたは単一の塩基、およびサンプルの Quality Value を計算する新しいアルゴリズム。

ABI – ABI PRISM® Sequencing Analysis ソフトウェアの旧バージョン（v3.7 以前）で使用されるアルゴリズム。

Clear Range
Clear Range は、5´と 3´の両末端でクオリティの低いまたはエラーが発生しやすいシーケンスを除外した後に残るシーケンスの領域です。KB Basecaller が解析に使用された場合、Clear Range は QV から計算されます。ABI Basecaller が使用された場合、範囲はデータ内の N から計算されるか、データの Start Point と Stop Point で塩基数だけ切り捨てられます（またはその両方が行われます）。

DyeSet/Primer ファイル
ABI PRISM 装置でのランに対して、DNA に標識する際に使用される蛍光色素とプライマー間の移動度の変動を調整するファイル。
これらのファイルは、モビリティ ファイルとも呼ばれます。Sequencing Analysis ソフトウェアのインストールにより、DyeSet/Primer ファイルは Mobility フォルダにインストールされます。パスは次のとおりです。

ドライプ名 :\AppliedBiosystems\SeqA5.1\AppSeqA\bin\Basecaller\Mobility

EPT
ラン全体の電圧、電力、電流、および温度の値を表示する多色グラフ。

Feature
サンプルの Clear Range（信頼範囲）。;
「Sample」ビュー ペインには、feature 情報がファイル内に存在する場合に表示される;
「Feature」ビューがあります。
IUB コード
シーケンス内の特定の位置におけるミックスベースの存在を表す英字。
国際生化学連合（International Union of Biochemistry）によって定義されたコードです。
次の表に、IUB コードとそれが表すミックスベース、および相補鎖のリストを示します。

<table>
<thead>
<tr>
<th>塩基</th>
<th>IUB コード</th>
<th>相補鎖</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenosine</td>
<td>A</td>
<td>T</td>
</tr>
<tr>
<td>Cytidine</td>
<td>C</td>
<td>G</td>
</tr>
<tr>
<td>Guanosine</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>Thymidine</td>
<td>T</td>
<td>A</td>
</tr>
<tr>
<td>Adenosine または Guanosine (pUrine)</td>
<td>R</td>
<td>Y</td>
</tr>
<tr>
<td>Cytidine または Thymidine (pYrimidine)</td>
<td>Y</td>
<td>R</td>
</tr>
<tr>
<td>Guanosine または Thymidine (Keto)</td>
<td>K</td>
<td>M</td>
</tr>
<tr>
<td>Adenosine または Cytidine (aMino)</td>
<td>M</td>
<td>K</td>
</tr>
<tr>
<td>Guanosine または Cytidine（強い 3 本の水素結合）</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Adenosine または Thymidine（弱い 2 本の水素結合）</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Cytidine、Guanosine、または Thymidine</td>
<td>B</td>
<td>V</td>
</tr>
<tr>
<td>Adenosine、Guanosine、または Thymidine</td>
<td>D</td>
<td>H</td>
</tr>
<tr>
<td>Adenosine、Cytidine、または Thymidine</td>
<td>H</td>
<td>D</td>
</tr>
<tr>
<td>Adenosine、Cytidine、または Guanosine</td>
<td>V</td>
<td>B</td>
</tr>
<tr>
<td>Adenosine、Cytidine、Guanosine、または Thymidine（任意の塩基）</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

IUPAC
International Union of Pure and Applied Chemistry（国際純正および応用化学連合）。
IUPAC が IUB コードを規格として採用しているため、この頭字語は IUB コードを指す場合もあります（‘IUB コード’を参照）。

Master Analysis Protocol
マスタープロトコールは、どのサンプルにも関連付けられていません。これは、サンプルにプロトコールが含まれない場合、「Apply to Selected Samples」機能または Analysis Defaults によりサンプルにコピーされ、割り当てられます。

.phd.1 ファイル
サンプル解析中に作成可能な別のファイル形式。このファイルには、シーケンスおよび Quality Value が含まれます。

Quality Value
特定のベースコードにエラーがある確率の推定（または予測）値。Quality Value は通常、phred プログラムによって定められた規則：QV = -10 log10(Pe) に従ってスケーリングされます。ここで、Pe は読み取りにエラーがある確率の推定値です。

Raw Data
4 つの蛻光色素のそれぞれに対して取り込まれた蛻光強度（シグナル）を表示する多色グラフ。

.scf ファイル
サンプル解析中に作成可能な別のファイル形式。このファイルには、シーケンス、エレクトロフェュログラム、および Quality Value が含まれますが、Raw Data は含まれません。
注：Standard Chromatogram Format のファイルが作成された場合、ファイル名に拡張子 .scf は付加されませんが、正しいファイル形式です。
.seq ファイル Sequencing Analysis ソフトウェアによって作成されるテキストファイル。

Spacing は、ピーク間のデータポイント数です。

Symmetry が負または赤の数値で表示されている場合、サンプルおよび解析パラメータ（またはそのいずれか）に問題があります。

エレクトロフェログラム 塩基を表すピークを示すシーケンスの多色ビクチャ。

オリジナル データ 最後に Basecaller が実行されたときに作成されたシーケンスデータ。

この Basecaller データは、サンプルファイル内に保存されます。サンプルファイル内で塩基を編集した場合、その塩基は編集可能なデータとして保存されます。

元の Basecaller データは、編集では上書きされません。ただし、サンプルが別の Basecaller または Basecaller 設定で再解析された場合には上書きされます。元の編集可能なデータ」および「サンプルファイル」も参照。

サンプルごとの Analysis Protocol サンプルごとのプロトコールは、サンプルファイル内に保存されたプロトコールです。これは編集が可能です。変更は、選択したサンプルのプロトコールのみに影響します。このプロトコールを他のサンプルに適用することはできません。

サンプル スコア サンプルスコアは QV から作成されます。そのサンプルの Clear Range シーケンスにおける塩基の平均 Quality Value です。

サンプルファイル サンプルファイルには、(エレクトロフェログラム装置によって読み取られた) 生の DNA シーケンスデータ、および Sequencing Analysis ソフトウェアによって作成された Basecaller、ピーク位置、エレクトロフェログラムが含まれています。

ABI PRISM 遺伝子解析装置では、生のサンプルファイルを作成し、Data Collection で解析することができます。このサンプルファイルまたは解析済みのサンプルファイルは、Sequencing Analysis ソフトウェアで解析されます。

シグナル データ ラン中に塩基の識別に使用される蛍光色素の1つの蛍光強度を示す数値。

シグナル強度数は、サンプルファイルの「Annotation」ビューに表示されます。

シグナル/ノイズ 「A」、「C」、「G」、または「T」塩基のシグナル強度の平均を、その塩基の平均ノイズで除算した値。

シーケンシング反応 蛍光標識された蛍光色素を DNA 伸長産物に組み込むために行われる反応。

シーケンス 一列に並んだ文字。

文字は、左から右に列で表示されます。具体的には、シーケンスとは、直鎖状 DNA シーケンスを表す一連のヌクレオチド塩基文字、またはタンパク質シーケンスを表す一連のアミノ酸文字です。

スキャン番号 ABI PRISM 遺伝子解析装置では、各スキャン時に1回のサンプリング行われ、情報はデータポイントとして保存されます。
相補鎖
二本鎖 DNA の逆鎖。たとえば、3' ～ 5' 鎖をシーケンスした場合、5' ～ 3' 鎖が相補鎖になります。

データ ポイント
蛍光のサンプリング。

長さ
シーケンスの長さとは、シーケンスに含まれる文字数（ギャップ文字を含む）です。
たとえば、GAATTC の長さは 6、GAA-TTC の長さは 7 です。

ノイズ
各蛍光色素の平均バックグラウンド蛍光強度。

ビュー
サンプル ウィンドウにおける様々な表示。

ベース コーリング
ベース コーリングは、Sequencing Analysis ソフトウェアの主要機能です。ベース コーリングは、サンプル内の各塩基、および塩基の配列順序を識別し、塩基の識別に関して疑問がある場所にマークを付けます。たとえば、A、C、G、T の 4 つの塩基のいずれかではなく、2 つの塩基が同じ位置で発生し、N が表示されている場合です。

ヘテロ接合体
エレクトロフェログラムで複数の塩基が表示される位置。

編集可能なデータ
シーケンシング解析の Basecaller データは、サンプルファイル内に「オリジナルデータ」として保存されます。

サンプルファイル内で塩基を編集した場合、その塩基は編集可能なデータとして保存されます。オリジナルデータと編集済みデータが並列してサンプルファイル内に保持されます。

サンプルウィンドウ内に表示されるデータは、編集可能なコピーです（編集可能なデータと元のデータの両方を表示するように選択している場合を除く）。

「サンプルファイル」および「オリジナルデータ」も参照。

ミックスベース
ミックスベースは、1 つの塩基の位置に 2、3、または 4 個の塩基が含まれることを意味します。これらの塩基には、適切な IUB コードが割り当てられます。

モビリティファイル
「DyeSet/Primer ファイル」参照。

読み取りの長さ
使用可能な高品質または高精度塩基の範囲で、Quality Value によって決定されます。この情報は、アナリシスレポート内に表示されます。
索 引

記号
+ マークのロケータ線
指定ポイントを決定するために使用 4-6

数字
310 サンプルファイルの自動解析
Data Collection ソフトウェアの設定 11-3
解析ソフトウェアの設定 11-5
機能 11-6
要件 11-2

A
ABI Basecaller 5-9, 用語集-1
「Actual Size」コマンド 4-4
「Add Samples」ボタン
サンプルファイル 8-19
Administrator 権限 D-2
Analysis Defaults
項目 8-17
サンプルファイルからの欠落 3-5
ソフトウェアによるインストール 3-5
適用方法 3-6
設定の編集 8-19
Analysis Protocol
概要 8-2
項目 8-3
作成 8-11
サンプルごと 8-2
データファイルへの適用 8-15
マスタ 8-2
Analyzer 権限 D-3
「Annotation」ビュー
概要 3-14
「サンプルウィンドウ」も参照

Applied Biosystems
Technical Communications viii
サービスとサポート ix
テクニカルサポート ix
ユーザマニュアルに関する顧客フィードバック viii

B
Basecaller
ABI 5-9, 用語集-1
KB 5-9, 用語集-1
Sequencing Analysis プログラムと同じフォルダ 4-2
印刷されたエレクトロフォログラム 4-22
エラー メッセージ 7-5, 8-7
パラメータについて 5-9
BC チェック ボックス
サンプルの処理に使用 3-11
レビュー 4-2

C
Clear Range
Clear Range の変更 4-8
定義 2-3
デフォルト設定の定義 8-10
computer
configuration requirement F-2
technical support for altered configuration F-2

D
Data Collection ソフトウェアと Analysis ソフトウェア間の通信 8-16
Display Settings
項目（「Bases」タブと「Data」タブ） 9-2
デフォルト設定の変更 9-9
DyeSet/Primer ファイル
印刷されたエレクトロフォログラム 4-22
パラメータについて 5-21
変更の結果 5-18
変更理由 5-13
命名規則 5-12
リスト 5-21

E
「Edit」メニュー B-4
<table>
<thead>
<tr>
<th>日本語（漢字）</th>
<th>英語</th>
<th>数値</th>
</tr>
</thead>
<tbody>
<tr>
<td>「Electropherogram」ビュー</td>
<td>Electroplating</td>
<td>4-14</td>
</tr>
<tr>
<td>「Sequence」ビューと一致するように更新</td>
<td>Update to match the sequence view</td>
<td>4-24</td>
</tr>
<tr>
<td>印刷</td>
<td>Print</td>
<td></td>
</tr>
<tr>
<td>オリジナルのデータの非表示</td>
<td>Do not display original data</td>
<td>4-11, 4-12</td>
</tr>
<tr>
<td>オリジナルのデータの表示</td>
<td>Display original data</td>
<td>4-11</td>
</tr>
<tr>
<td>概要</td>
<td>Overview</td>
<td>3-19</td>
</tr>
<tr>
<td>「サンプルウィンドウ」も参照</td>
<td>Also refer to the sample window</td>
<td></td>
</tr>
<tr>
<td>使用不可</td>
<td>Not usable</td>
<td>3-19</td>
</tr>
<tr>
<td>線の色</td>
<td>Line color</td>
<td>3-20</td>
</tr>
<tr>
<td>単一のサンプルの表示</td>
<td>Display single sample</td>
<td>3-19</td>
</tr>
<tr>
<td>複数のサンプルの表示</td>
<td>Display multiple samples</td>
<td>3-19</td>
</tr>
<tr>
<td>ベースコール</td>
<td>Bases</td>
<td>4-3</td>
</tr>
<tr>
<td>「EPT」ビュー</td>
<td>EPT View</td>
<td></td>
</tr>
<tr>
<td>「サンプルウィンドウ」も参照</td>
<td>Also refer to the sample window</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Feature</td>
<td>3-18</td>
</tr>
<tr>
<td>「Feature」ビュー</td>
<td>Feature View</td>
<td></td>
</tr>
<tr>
<td>概要</td>
<td>Overview</td>
<td>3-18</td>
</tr>
<tr>
<td>「サンプルウィンドウ」も参照</td>
<td>Also refer to the sample window</td>
<td></td>
</tr>
<tr>
<td>「File」メニュー</td>
<td>File Menu</td>
<td>B-4</td>
</tr>
<tr>
<td>「Find Again」コマンド</td>
<td>Find Again Command</td>
<td>4-10</td>
</tr>
<tr>
<td>「Find」ダイアログボックス</td>
<td>Find Dialog Box</td>
<td>4-10</td>
</tr>
<tr>
<td>「Full View」コマンド</td>
<td>Full View Command</td>
<td>4-4</td>
</tr>
<tr>
<td>H</td>
<td>Help</td>
<td>B-6</td>
</tr>
<tr>
<td>「Help」メニュー</td>
<td>Help Menu</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>IUPAC/IUBコード</td>
<td>E-2</td>
</tr>
<tr>
<td>K</td>
<td>KB Basecaller</td>
<td>5-9, User Manual-1</td>
</tr>
<tr>
<td>L</td>
<td>LOR</td>
<td>2-3</td>
</tr>
<tr>
<td>読み取りの長さを参照</td>
<td>Read length reference</td>
<td>2-3</td>
</tr>
<tr>
<td>M</td>
<td>Make Matrix</td>
<td>10-2</td>
</tr>
<tr>
<td>1つのサンプルファイルの使用</td>
<td>Use of single sample file</td>
<td>10-2</td>
</tr>
<tr>
<td>マトリックススタンダードの使用</td>
<td>Use of matrix standard</td>
<td>10-3</td>
</tr>
<tr>
<td>Master Analysis Protocol</td>
<td>Master Analysis Protocol</td>
<td>8-2</td>
</tr>
<tr>
<td>概要</td>
<td>Overview</td>
<td>8-2</td>
</tr>
<tr>
<td>Matrix Makerユーティリティ</td>
<td>Matrix Maker Utility</td>
<td>10-2</td>
</tr>
<tr>
<td>MSDS、入手</td>
<td>MSDS, Obtainable</td>
<td>ix</td>
</tr>
<tr>
<td>N</td>
<td>Nビーコマーカー</td>
<td>N Peak Marker</td>
</tr>
<tr>
<td>検索</td>
<td>Search</td>
<td>4-3</td>
</tr>
<tr>
<td>O</td>
<td>Optionsダイアログボックス</td>
<td>Options Dialog Box</td>
</tr>
<tr>
<td>P</td>
<td>Pチェックボックス</td>
<td>P Check Box</td>
</tr>
<tr>
<td>サンプルの処理に使用</td>
<td>Use for sample processing</td>
<td>3-11</td>
</tr>
<tr>
<td>レビュー</td>
<td>Review</td>
<td>4-2</td>
</tr>
<tr>
<td>Peak 1 Location</td>
<td>Peak 1 Location</td>
<td>5-15</td>
</tr>
<tr>
<td>フィールド</td>
<td>Field</td>
<td>5-15</td>
</tr>
<tr>
<td>モビリティ補正</td>
<td>Mobility correction</td>
<td>5-15</td>
</tr>
<tr>
<td>.phd.1ファイル形式</td>
<td>.phd.1 File Format</td>
<td>User Manual-2</td>
</tr>
<tr>
<td>PPチェックボックス</td>
<td>PP Check Box</td>
<td>3-11</td>
</tr>
<tr>
<td>サンプルの処理に使用</td>
<td>Use for sample processing</td>
<td>3-11</td>
</tr>
<tr>
<td>レビュー</td>
<td>Review</td>
<td>4-2</td>
</tr>
<tr>
<td>「PP」チェックボックス</td>
<td>PP Check Box</td>
<td>5-7</td>
</tr>
<tr>
<td>Q</td>
<td>Quality Value（QV）</td>
<td>6-2</td>
</tr>
<tr>
<td>塩基当たりのQVの解釈</td>
<td>Interpretation of QV per base</td>
<td>6-2</td>
</tr>
<tr>
<td>塩基の編集</td>
<td>Base editing</td>
<td>6-7</td>
</tr>
<tr>
<td>低、中、高バー</td>
<td>Low, medium, high bar</td>
<td>6-5</td>
</tr>
<tr>
<td>定義</td>
<td>Definition</td>
<td>2-3</td>
</tr>
<tr>
<td>表示のカスタマイズ</td>
<td>Customization</td>
<td>6-4</td>
</tr>
<tr>
<td>品質バーおよび値の表示</td>
<td>Quality bar and value display</td>
<td>6-4</td>
</tr>
<tr>
<td>R</td>
<td>Raw Data</td>
<td>5-16</td>
</tr>
<tr>
<td>Raw Dataのいずれかが使用不可の場合</td>
<td>Any raw data is not usable</td>
<td>5-16</td>
</tr>
<tr>
<td>Stop Pointの設定</td>
<td>Stop point setting</td>
<td>5-16</td>
</tr>
<tr>
<td>一部のみの解析</td>
<td>Partial analysis</td>
<td>5-16</td>
</tr>
<tr>
<td>「Raw Data」ビュー</td>
<td>Raw Data View</td>
<td>3-22</td>
</tr>
<tr>
<td>概要</td>
<td>Overview</td>
<td>3-22</td>
</tr>
<tr>
<td>「サンプルウィンドウ」も参照</td>
<td>Also refer to the sample window</td>
<td></td>
</tr>
<tr>
<td>線の色</td>
<td>Line color</td>
<td>3-23</td>
</tr>
<tr>
<td>データの使用</td>
<td>Data use</td>
<td>3-22</td>
</tr>
</tbody>
</table>
S

「Sample Manager」ウィンドウ
赤のテキスト、示す状況 4-2
概要 5-2
サンプルファイルの追加 3-9
サンプルファイルの削除 3-11
Sample Name パラメータ
フィールドについて 5-5
「Sample Name」パラメータ
印刷されたエレクトロフェログラム 4-22
.scf ファイル形式 用語集-2
Scientist 権限 D-2
.seq ファイル形式 用語集-2
「Sequence」ビュー
概要 3-16
切り替え 3-16
「サンプルウィンドウ」も参照
Sequencing Analysis
開く 3-2
ロックファイルまたは DataStore 3-2
「Show Original」コマンド 4-11
「Show」チェック ボックス 5-4
Spacing
印刷されたエレクトロフェログラム 4-22
「Spacing」フィールド 5-15
Start Point
再計算 5-16
フィールドについて 5-16
Stop Point
ベースコーリングを停止するための使用 5-16
変更 5-16

T

Technical Communications
電子メールアドレス viii
連絡 viii
technical support, for computers with altered configuration F-2
「Tools」メニュー B-5

V

「View」メニュー B-4 B-5

W

warranty
claims F-2
exceptions F-3
for computers with altered configuration F-2
limitations F-3
period F-2
warranty period, effective date F-2

あ

「Sample Manager」ウィンドウにおける赤のテキスト、太字の赤のテキスト「赤のテキスト」も参照
新しい機能 2-2
アナリシス レポート
印刷 7-9
エクスポート 7-10
概要 2-11
レポート要約、LOR、品質表、エラー表の項目 7-2
アミノ酸の略語 E-4
アンインストール手順 1-7
安全
職場環境 xiii
装置 xiii
装置を操作する前に xiii
人間工学的 xii, xiii
表記法 xii

い

移動と持ち上げ
コンピュータ xiii
モニタ xiii

印刷
P パラメータ 5-8
アナリシス レポート 7-9
サンプルウィンドウビュー 4-17

え

塩基、シーケンス内での変更 4-14

か

解析
概要、解析 2-12
結果のレビュー 4-2
メニュー B-5
解析済みデータ 4-14
塩基の編集 4-14
シーケンス内でのパターンの検索 4-10
表示 4-14

き
キー コード
IUPAC/IUB コード E-2
アミノ酸の略語 E-4
相補鎖 E-3
普遍的遺伝子コード E-3
翻訳表 E-2 E-4
危険
説明 xii
装置の移動 / 持上げ xiii
反復動作 xii, xiii

け
警告、説明 xii
警告記号
マニュアル内 xii
権限
Administrator D-2
Analyst D-3
Scientist D-2
SeqScape の使用 D-2
検索
式 4-10
パターン 4-10

こ
顧客フィードバック、Applied Biosystems viii
ゴシック体、使用する場合 vii
コピー
310 DyeSet/Primer ファイル 1-16, 1-18
310 マトリックス ファイル 1-16, 1-18
377 マトリックス ファイル 1-22
マトリックス ファイル 10-5

さ
サービスとサポート、入手 ix
削除 「削除」も参照
作成
新規ユーザ 1-11
参照用の相補鎖 E-3
サンプルウィンドウ
ビューの印刷 4-17
サンプルスコア
定義 2-3
サンプルウィンドウ 3-13 D-24
「Annotation」ビュー、「Sequence」ビュー、「Feature」ビュー、
「Electropherogram」ビュー、「Raw Data」ビュー、「EPT」ビューも参照
サンプルウィンドウ内のデータポイント
値の決定 4-6
サンプルごとの Analysis Protocol 8-2
サンプルファイル 3-4
ウィンドウからの削除 3-11
1つ以上のファイルの追加 3-9
読み取り専用属性の変更 A-4
読み取り専用ファイルの保存 4-15
し
シーケンシング
モビリティファイル C-7 C-10
シーケンシングパターン 4-10
シーケンス
塩基の変更 4-14
自動解析 1-23
自動サンプル解析 1-23
重要
説明 xii
重要、記述 viii
初回ユーザ 1-8
職場環境の安全性 xiii
資料
このマニュアル関連 viii
フィードバック viii
新規ユーザ
作成 1-11
ログイン 1-14
す
ズーム コマンド 4-4
せ
前提条件、このマニュアルの使用 vii
索引

データの表示 3-12
データベース
Sample Manager へのデータベースファイルの追加 3-11
テクニカルサポート
連絡 ix

と
トラブルシューティング
「よくある質問」を参照
トレーニング、情報の入手 ix

な
名前に使用できない文字 1-8

に
人間工学的安全性 xii, xiii
認証 (Authentication) と監査 (Audit) の設定 1-11

は
ハードウェアおよびソフトウェア要件 1-3
パラメータ 5-1 B-11
反復動作による危険 xii, xiii

ひ
ピーク、検査 4-3
日付と時刻、印刷された電気泳動像 4-22
必要なシステムおよび推奨するシステム 1-3
表記法

ゴシック体 vii
このマニュアル vii
重要！ viii
注意 viii
太字 vii
メニュー コマンド vii
ユーザへの注意事項 viii
表記法、安全 xii

ふ
ファイル形式

.phd.1 用語集-2
.scf 用語集-2
.seq 用語集-2
ファイル形式の変更 8-26

データ
解析シークエンスの編集 4-14
解析シークエンスのレビュー 4-2
サンプル Quality Value の表示 4-13
相補鎖の表示 4-12
元の表示 4-11
データビュー
相補鎖 4-12
複数サンプルの表示 9-6
太字、使用する場合 vii
普遍的遺伝子コード E-3
分解能、ピーク例 4-3

へ
ベースラインノイズ 3-22
変更
ユーザ情報 1-13
ユーザパスワード 1-15
編集 8-11
解析済みシークエンスデータ 4-14

ほ
保証
権利と責任 1-2
ボタン、ツールバー B-7
翻訳表
IUPAC/IUBコード E-2
アミノ酸の略語 E-4
相補鎖 E-3
普通的遺伝子コード E-3

ま
マトリクス
310フォルダの場所 1-16
マトリクスファイル
Sample Manager 5-14
コピー 10-5

み
ミックスベース 2-3, 8-9
識別 8-12

め
メニュー コマンド、記述の表記法 vii
メニュー コマンド
「Analysis」メニュー B-5
「Edit」メニュー B-4
「File」メニュー B-4
「Help」メニュー B-6
「Tools」メニュー B-5
「View」メニュー B-4 B-5

も
元のシークエンスデータ
表示/非表示 4-11
モビリティ
310フォルダの場所 1-16
モビリティファイル、選択 C-7 C-10

ゆ
ユーザ
権限 D-2
情報、変更 1-13
新規、ログイン手順 1-14
新規作成 1-11
パスワードの変更 1-15
ログイン 1-14
ログインプロセス 1-8
ユーザへの注意事項、定義 viii

よ
要件、ハードウェアおよびソフトウェア 1-3
よくある質問 A-1
読み取り専用サンプルファイル
属性の変更 A-4
保存 4-15
読み取りの長さ
定義 2-3

ら
ライセンスと保証
権利と責任 1-2
ラン中の電圧、EPTビューの使用 3-24
ラン中の電流、EPTビューの使用 3-24
ラン中のワット、EPTビューの使用 3-24

り
リテラル検索、パターンの検索 4-10

ろ
ログイン
新規ユーザ 1-14
ログインプロセスユーザ 1-8
ロックファイル
DataStore 3-2