GeneArt® Site-Directed Mutagenesis PLUS Kit

For quick, highly efficient *in vitro* site directed mutagenesis of up to 3 sites on plasmids of up to 14kb

Catalog Number A14604

Part Number A14611

Publication Number MAN0006686

Revision 12 June 2012
For Research Use Only. Not for human or animal therapeutic or diagnostic use.

Information in this document is subject to change without notice.

LIFE TECHNOLOGIES CORPORATION AND/OR ITS AFFILIATE(S) DISCLAIM ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. TO THE EXTENT ALLOWED BY LAW, IN NO EVENT SHALL LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF.

NOTICE TO PURCHASER: LIMITED USE LABEL LICENSE: Research Use Only

The purchase of this product conveys to the purchaser the limited, non-transferable right to use the purchased amount of the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and is not for use in commercial applications of any kind, including, without limitation, quality control and commercial services such as reporting the results of purchaser’s activities for a fee or other form of consideration. For information on obtaining additional rights, please contact outlicensing@lifetech.com or Out Licensing, Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, California 92008.

TRADEMARKS

The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.

© 2012 Life Technologies Corporation. All rights reserved
Contents

Kit Contents and Storage ... 2

Product Information .. 3
 Description of the System .. 3

Methods ... 5
 Plasmid and Primer Specifications .. 5
 Methylation and Mutagenesis Reactions .. 8
 Recombination Reaction .. 11
 Transformation into DH5α™-T1R™ E. Coli ... 12
 Methylation Control ... 14
 Mutagenesis Control .. 15
 Transformation Control ... 17
 Troubleshooting ... 18

Appendix A: Vectors ... 19
 pMSDM-White Vector .. 19

Appendix B: Tools for Primer Design .. 20
 GeneArt® Primer and Construct Design Tool ... 20
 Degenerate Bases .. 22

Appendix C: Ordering Information .. 23
 Accessory Products ... 23

Documentation and Support ... 24
 Obtaining Support ... 24
Kit Contents and Storage

Kit Components

The GeneArt® Site-Directed Mutagenesis PLUS Kit is shipped as two separate modules (−20°C and −80°C modules) on dry ice and contains the following components. The reagents supplied are sufficient to perform 10 site-directed mutagenesis reactions and one control reaction. Store the kit components as indicated.

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA Methylase (4 units/µL)</td>
<td>12 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>200X SAM (S-adenosine methionine)</td>
<td>10 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>GeneArt® 2X Enzyme Mix</td>
<td>100 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>10X PCR Enhancer</td>
<td>100 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>PCR Water</td>
<td>1.8 mL</td>
<td>−20°C</td>
</tr>
<tr>
<td>pMSDM-White Vector (20 ng/µL)</td>
<td>5 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>Control Primer Mix 1 (10 µM)</td>
<td>20 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>Control Primer Mix 2 (10 µM)</td>
<td>20 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>Control Primer Mix 3 (10 µM)</td>
<td>20 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>0.5 M EDTA</td>
<td>500 µL</td>
<td>−20°C</td>
</tr>
<tr>
<td>One Shot® MAX Efficiency® DH5α™-T1R Cells</td>
<td>1 box</td>
<td>−80°C</td>
</tr>
</tbody>
</table>

One Shot® MAX Efficiency® DH5α™-T1R Components

Each box of One Shot® MAX Efficiency® DH5α™-T1R contains the following components. The reagents provided are sufficient for 21 transformations. Store the box at −80°C, or the individual components as indicated.

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemically Competent DH5α™-T1R Cells</td>
<td>21 × 50 µL</td>
<td>−80°C</td>
</tr>
<tr>
<td>S.O.C. Medium</td>
<td>6 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>pUC19 Control Plasmid (10 pg/µL)</td>
<td>50 µL</td>
<td>−20°C</td>
</tr>
</tbody>
</table>

Genotype of DH5α™-T1R Cells

F° φ80lacZAM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rK-, mK+) phoA supE44 thi-1 gyrA96 relA1 tonA (confers resistance to phage T1)

Product Use

For Research Use Only. Not for human or animal therapeutic or diagnostic use.
Product Information

Description of the System

The GeneArt® Site-Directed Mutagenesis PLUS Kit provides a simple and highly efficient method for in vitro multi-site-directed mutagenesis in DNA plasmids of up to 14 kb from any E. coli plasmid, with no specialized vectors or restriction sites required.

This unique system can mutate up to three sites per vector, and generate base substitutions, deletions, or insertions of up to 3 nucleotides at each of the three sites, or up to 25 nucleotides at a single site. In addition, it can introduce up to 3 degenerated nucleotides at three sites or up to 12 nucleotides at a single site on the target plasmid. The entire procedure, including transformation, may be completed in less than 3 hours (when using a 3 kb plasmid).

In the GeneArt® Site-Directed Mutagenesis PLUS Kit, the DNA methylation and amplification steps are combined into a single reaction, and the three mutation sites are generated using three pairs of complementary mutagenic oligonucleotide primers with centrally located mutation sites. There is no requirement for an in vitro digestion step after the mutagenesis reaction and no purification step is required after methylation or mutagenesis.

The GeneArt® Site-Directed Mutagenesis PLUS Kit relies on the inherent properties of DNA methylase, high fidelity DNA polymerase, recombination enzymes, and McrBC endonuclease, as shown in the workflow diagram on page 4.

Applications

In vitro site-directed mutagenesis can be used to:

- Study protein function
- Identify enzyme active sites
- Design new proteins

Continued on next page
Description of the System, continued

Multi-Site Mutagenesis Workflow

1. **Methylation**
 - Methylate plasmid DNA and amplify the plasmid in a mutagenesis reaction with up to three overlapping primers containing the target mutations.

2. **Mutagenesis**
 - Perform the in vitro recombination reaction.

3. **In vitro recombination reaction**
 - Add 1 µL 0.5 M EDTA to stop the reaction. Use 2 µL of recombination reaction sample for transformation.

4. **Transformation**
 - Transform the sample into DH5α™-T1® competent E. coli. The host cell circularizes the linear mutated DNA, and McrBC endonuclease in the host cell digests the methylated template DNA, leaving only unmethylated, mutated product.

 Incubate on ice for 15 minutes, heat shock for 30 seconds. Add 250 µL S.O.C., recover for 1 hour at 37°C.
Methods

Plasmid and Primer Specifications

| **Target Plasmid Specifications** | • This kit has been tested using plasmids ranging in size from 2.8 kb to 14 kb.
• Plasmids may be isolated from *E. coli*.
• No special vectors or restriction sites are required. |
| **Primer Specifications** | • You may use up to 3 pairs of mutagenic primers with the GeneArt® Site-Directed Mutagenesis PLUS Kit.
• The mutation site should be centrally located on both primers (forward and reverse) of each pair, and can contain deletions, insertions, and/or any substitutions.
• For most applications, DNA oligonucleotides purified by desalting are generally sufficient, although oligonucleotides purified by HPLC or PAGE may increase the mutagenesis efficiency.
• Prepare each primer pair at a stock concentration of 100 µM in DNase- and RNase-free water.
PCR Primers for Single-Site Mutagenesis
• For single-site mutagenesis (i.e., when using a single pair of mutagenic primers), a site is defined as 25 nucleotides.
• Mutagenic primers must have unique binding sites and complementary sequences between primers must be avoided.
• Primers that have a similar Tₘ and a G or a C at their 5’ end work better.
• When using A, G, T, C for modification, up to 25 bases can be modified.
• When using degenerate bases (see [Degenerate Bases, page 22](#)) for modification, up to 12 bases can be modified.
• For single-site mutagenesis using A, G, T, C for modification:
 o If the mutation site is ≤12 nucleotides long, it should be flanked by 15 nucleotides of non-mutagenic sequences.
 o If the mutation site is between 12 and 25 nucleotides long, it should be flanked by 25 nucleotides of non-mutagenic sequences.
• For single-site mutagenesis using degenerate bases for modification:
 o If the number of degenerate bases is ≤3, the mutation site should be flanked by 15 nucleotides of non-mutagenic sequences starting from the outer-most degenerate base(s) (i.e., on the most 5’ and 3’ position).
 o If the number of degenerate bases is between 3 and 12, the mutation site should be flanked by 20 nucleotides of non-mutagenic sequences starting from the outer-most degenerate bases. |

Continued on next page
Plasmid and Primer Specifications, continued

Primer Specifications continued

<table>
<thead>
<tr>
<th>PCR Primers for Multi-Site Mutagenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• For multi-site mutagenesis, a site is defined as 3 nucleotides.</td>
</tr>
<tr>
<td>• Mutagenic primers must have unique binding sites and complementary sequences between primers belonging to different mutation sites must be avoided.</td>
</tr>
<tr>
<td>• Primers that have a similar Tm and a G or a C at their 5’ end work better.</td>
</tr>
<tr>
<td>• Each site can have an insertion (A, T, G, C, and/or degenerate bases) or a deletion of up to 3 nucleotides.</td>
</tr>
<tr>
<td>• Each multi-site mutagenesis primer must contain 15 nucleotides of non-mutagenic sequences flanking the outer-most modification(s) (i.e., mutations on the 5’ and 3’ position of the mutation site).</td>
</tr>
<tr>
<td>• If there are ≤50 nucleotides between two mutation sites, we recommend using a single mutagenic primer pair to introduce them into the target plasmid.</td>
</tr>
<tr>
<td>• If all three sites are close enough that the mutagenic primers would overlap, we recommend designing a single primer of up to 80 nucleotides.</td>
</tr>
<tr>
<td>• If there are >50 nucleotides between two mutation sites, we recommend using separate mutagenic primer pairs to introduce them into the target plasmid.</td>
</tr>
</tbody>
</table>

GeneArt® Primer and Construct Design Tool

The GeneArt® Primer and Construct Design Tool is an intuitive, web-based tool to guide you when you are designing your oligonucleotide primers for multi-site mutagenesis. The tool minimizes the planning time required for designing the PCR primers, identifies potential pitfalls linked to your specific sequences, and performs in silico mutagenesis using your sequences. The GeneArt® Primer and Construct Design Tool also provides you with a graphic representation of the final molecule containing the mutations as well as a downloadable GenBank file compatible with VectorNTI® and other software for molecular biology workflows (see page 20).

Ordering Custom Primers

To order custom DNA oligonucleotides, visit www.lifetechnologies.com/oligos or contact Technical Support (see page 24). Alternatively, you can order custom DNA oligonucleotides using the GeneArt® Primer and Construct Design Tool, which allows one-click online ordering of custom primers (for countries with enabled online ordering).
Plasmid and Primer Specifications, continued

pMSDM-White Vector

The pMSDM-White Vector, included in the kit as a control plasmid, is a 5 kb pUC19-based plasmid containing the spectinomycin-resistance gene fused to the first 1,815 bp of *E. coli*’s *lacZ* gene. The gene fusion harbors 3 point mutations that inactivate the gene’s ability to perform α-complementation when introduced into DH5α™-T1R cells. The mutations are:

i) a C→T replacement at position 256, which generates a premature stop codon

ii) an A deletion at position 480, which generates a frameshift

iii) a G insertion at position 1,062, which generates a frameshift

The mutant control plasmid produces white colonies on LB agar plates containing X-galactosidase (X-gal). For a map of the pMSDM-White Vector, see page 19.

Control Primer Mixes

The GeneArt® Site-Directed Mutagenesis PLUS Kit includes three separate tubes of Control Primer Mixes (Control Primer Mix 1, 2, and 3). When used together, the control primer mixes are designed to revert the point mutations on the pMSDM-White Vector back to the wild-type sequence.

Only when all three mutations are reverted to the wild-type sequences does the plasmid complement the phi80lacZAM15 allele present in DH5α™-T1R, and the cells produce blue colonies when growing on LB agar plates containing X-gal.
Methylation and Mutagenesis Reactions

Materials Needed

Components supplied with the kit

- 10X Enhancer
- DNA Methylase (4 U/µL)
- 200X SAM (diluted 1:8 for a 25X SAM working solution)
- PCR Water
- Optional: Control Primer Mixes 1, 2, and 3 for Mutagenesis Control Reaction (see page 15)

Additional materials needed

- Target plasmid DNA (20 ng/µL)
- Custom primers for your target plasmid (at a stock concentration of 100 µM in DNase- and RNase-free water; see Primer Specifications, pages 5–6)
- High-fidelity DNA polymerase such as the AccuPrime™ Pfx DNA Polymerase (see page 23 for ordering information)

Preparing 25X SAM

Create a fresh dilution of 25X SAM from the kit-supplied 200X SAM in sterile, distilled water each time you perform the mutagenesis procedure. For example, dilute 200X SAM to 25X by adding 1 µL 200X SAM to 7 µL PCR Water (for 8 mutagenesis reactions). Scale up or down as needed.

25X SAM is not stable, and loses activity within a few hours after preparation. Do not use 25X SAM if it is more than a few hours old.

DNA Polymerase

The GeneArt® Site-Directed Mutagenesis PLUS Kit can be used with any high fidelity DNA polymerase. However, the reaction mixtures and PCR protocols recommended in the user guide have been optimized using the AccuPrime™ Pfx DNA Polymerase, because the AccuPrime™ Pfx DNA Polymerase is ideal for high-fidelity, high-specificity amplification of DNA fragments (see page 23 for ordering information). When using other DNA polymerases, the reaction conditions may need to be optimized.

Amount of Plasmid

- Use 50 ng or less of plasmid DNA per 50 µL of methylation reaction/PCR amplification. For best results, we recommend using 20–25 ng of the target plasmid per 50 µL of mutagenesis reaction as a starting point.
- Using more than 50 ng of plasmid per 50 µL reaction volume reduces the efficiency of the methylation reaction and may decrease mutagenesis efficiency.

Continued on next page
Methylation and Mutagenesis Reactions, continued

Overview of Multi-Site Mutagenesis Procedure

The protocols on the following pages provide instructions for performing a multi-site mutagenesis procedure for three sites using three pairs of mutagenic primers (see example image below). In this procedure, the master reaction mix is prepared and divided equally amongst three tubes, into which the mutagenic primer mixes are added. Each primer mix contains a forward and a reverse primer that corresponds to a separate mutation site to prevent the primers from annealing to each other. After the mutagenic PCR amplification, the PCR products are mixed together in the recombination reaction (see page) and then transformed into One Shot® MAX Efficiency® DH5α™-T1® competent E. coli cells, which completes the multi-site mutagenesis procedure.

We highly recommend that you use the web-based GeneArt® Primer and Construct Design Tool to design your mutagenic primers. In addition to helping you to design the mutagenic primers, the tool gives instructions for preparing the separate mutagenic primer mixes and provides the optimum extension times for each amplification reaction. The GeneArt® Primer and Construct Design Tool is available at https://rnaidesigner.invitrogen.com/oligoDesigner.

Example for Multi-Site Mutagenesis

The following image represents a hypothetical multi-site mutagenesis procedure and it is provided as an example to illustrate the primer mixing scheme.

Preparing Primer Mixes

1. Prepare the following primer mixes using the 100 µM primer stocks. The final working concentration of each primer will be 10 µM.

 Primer Mix 1: 16 µL H₂O + 2 µL of R1 + 2 µL of F3
 Primer Mix 2: 16 µL H₂O + 2 µL F1 + 2 µL of R2
 Primer Mix 3: 16 µL H₂O + 2 µL of F2 + 2 µL of R3

Continued on next page
Methylation and Mutagenesis Reactions, continued

Methylation and Mutagenesis Reaction

1. Prepare the following reaction mixture:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X AccuPrime™ Pfx Reaction buffer</td>
<td>6 µL</td>
<td>1X</td>
</tr>
<tr>
<td>10X Enhancer</td>
<td>6 µL</td>
<td>1X</td>
</tr>
<tr>
<td>Plasmid DNA (20 ng/µL)</td>
<td>1.2 µL</td>
<td>24 ng</td>
</tr>
<tr>
<td>DNA Methylase (4 U/µL)</td>
<td>1.2 µL</td>
<td>4.8 units</td>
</tr>
<tr>
<td>25X SAM</td>
<td>2.4 µL</td>
<td>1X</td>
</tr>
<tr>
<td>AccuPrime™ Pfx (2.5 U/µL)</td>
<td>0.5 µL</td>
<td>1.5 units</td>
</tr>
<tr>
<td>PCR water</td>
<td>to 57 µL</td>
<td>—</td>
</tr>
</tbody>
</table>

2. Mix the reaction mixture by pipetting it up and down, and aliquot 19 µL each into three PCR tubes labeled 1, 2, and 3.

3. Add 1 µL of Primer Mix 1 into Tube 1, 1 µL of Primer Mix 2 into tube 2, and 1 µL of Primer Mix 3 to Tube 3.

4. Perform the methylation reaction and PCR using the following parameters:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Duration</th>
<th>Number of Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>37°C</td>
<td>12–20 minutes*</td>
<td>1</td>
</tr>
<tr>
<td>94°C</td>
<td>2 minutes</td>
<td></td>
</tr>
<tr>
<td>94°C</td>
<td>20 seconds</td>
<td></td>
</tr>
<tr>
<td>57°C</td>
<td>30 seconds</td>
<td>12–18 cycles†</td>
</tr>
<tr>
<td>68°C</td>
<td>30 seconds/kb of plasmid</td>
<td></td>
</tr>
<tr>
<td>68°C</td>
<td>5 minutes</td>
<td>1</td>
</tr>
<tr>
<td>4°C</td>
<td>As necessary</td>
<td>1</td>
</tr>
</tbody>
</table>

*Carry out the methylation of the plasmid at 37°C for 12–20 minutes. We recommend 12–15 minutes for 2.8–5 kb plasmids and 15–20 minutes for 5–14 kb plasmids.

†The cycling parameters specify a 30-seconds extension for each 1 kb of DNA. For optimal mutagenesis efficiency, we recommend 12–15 cycles for 2.8–5 kb plasmids and 15–18 cycles for 5–14 kb plasmids.

Analyzing the PCR Products

1. After the reaction, analyze 5 µL of the product on a 0.8% agarose gel.

 Note: If you observe very faint bands, increase the amount of target plasmid up to 50 ng (see Amount of Plasmid, page 8). Note that in some cases you may obtain high mutagenesis efficiency even with multiple or faint bands on an agarose gel.

2. Proceed directly to the Recombination Reaction, page 11, and store excess mutagenesis reaction product at −20°C.
Recombination Reaction

Introduction

The *in vitro* recombination reaction is required for multi-site mutagenesis reactions. Although not essential for single-site mutagenesis, the recombination reaction boosts the mutagenesis efficiency and increases the colony yield 3- to 10-fold in single-site mutagenesis reactions.

Recombination Reaction

1. Set up the following 20-µL recombination reaction using the PCR products from page 10.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR water</td>
<td>4 µL</td>
<td>—</td>
</tr>
<tr>
<td>PCR product from Tube 1</td>
<td>2 µL</td>
<td>—</td>
</tr>
<tr>
<td>PCR product from Tube 2</td>
<td>2 µL</td>
<td>—</td>
</tr>
<tr>
<td>PCR product from Tube 3</td>
<td>2 µL</td>
<td>—</td>
</tr>
<tr>
<td>GeneArt® 2X Enzyme Mix</td>
<td>10 µL</td>
<td>1X</td>
</tr>
</tbody>
</table>

Note: Thaw the GeneArt® 2X Enzyme Mix on ice. The GeneArt® 2X Enzyme Mix might appear slightly turbid; this is normal and does not affect the enzyme activity. Do not centrifuge the enzyme mix to produce a clarified supernatant.

2. Mix well and incubate at room temperature for 15 minutes.
3. Stop the reaction by adding 1 µL 0.5 M EDTA. Mix well and place the tubes on ice.
4. Place the tubes on ice and immediately proceed to transformation (see page 12).
Transformation into DH5α™-T1R \textit{E. Coli}

General Handling

One Shot® MAX Efficiency® DH5α™-T1R competent cells are supplied with the GeneArt® Site-Directed Mutagenesis PLUS Kit. Be extremely gentle when working with competent cells. Competent cells are highly sensitive to changes in temperature or mechanical lysis caused by pipetting. Perform the transformation procedure immediately after thawing the cells on ice. **Mix by swirling or tapping the tube gently, not by pipetting or vortexing.**

Materials Needed

Components supplied with the kit
- One Shot® MAX Efficiency® DH5α™-T1R competent cells
- S.O.C. Medium

Additional materials needed
- 37°C shaking and non-shaking incubator
- 10-cm diameter LB agar plates with the appropriate selection antibiotic
- Ice bucket with ice
- 42°C water bath
- Test tube rack to hold all transformation tubes so that they can be put into the 42°C water bath at once
- Optional: Plating beads (such as ColiRollers™ Plating Beads available from EMD Chemicals, Cat. no. 71013-3)
- Optional: X-gal

Before Starting
- Equilibrate a water bath to 42°C
- Warm a 200-µL vial of S.O.C. medium to room temperature
- Spread X-gal onto LB agar plates with antibiotic, if desired

Transformation Procedure

1. Thaw on ice one 50-µL vial of One Shot® MAX Efficiency® DH5α™-T1R competent cells for each transformation. Thaw for approximately 5–7 minutes (no more than 20 minutes). For multiple reactions (vials), number the tube caps. **Note:** One Shot® MAX Efficiency® DH5α™-T1R cells are mcrBC+. Other seemingly similar competent cells, such as TOP10, cannot be used in place of DH5α™-T1R cells.

2. Transfer 3 µL from the recombination reaction directly into each vial of cells and mix by tapping gently. **Do not mix by pipetting up and down.** **Note:** To determine methylation efficiency, use 2 µL of the methylation reaction (from Step 4, page 14) with and without SAM for transformation.

3. Cap the vials, cover completely with ice, and incubate for 15 minutes.

4. Transfer vials to a test tube rack and incubate the entire rack at once for exactly 30 seconds in the 42°C water bath. Do not mix or shake.

5. Remove the rack of vials from the 42°C bath and place it on ice for 2 minutes.

Continued on next page
Transformation into DH5α™-T1R E. Coli, continued

Transformation Procedure, continued

6. Remove the vials from ice, then de-cap and add 250 µL of pre-warmed S.O.C. medium to each vial.
 Note: S.O.C. is a rich medium; sterile technique must be practiced to avoid contamination.

7. Recap the vials and place them in a microcentrifuge rack. Secure the vials with tape and incubate them at 37°C for exactly 1 hour in a shaking incubator set to 225 rpm.
 Note: Incubation of the transformation reaction at 37°C for 1 hour is not necessary for ampicillin-resistant plasmids. However, the 1-hour incubation is required for kanamycin or spectinomycin-resistant plasmids.

8. While the vials are shaking, label the LB agar plates containing the appropriate antibiotic. For blue-white screening, supplement the plates with X-Gal.

9. Transfer 5 to 8 plating beads (such as ColiRollers™ Plating Beads, see page 12) to each agar plate and warm the plates for about 30 minutes in a 37°C incubator.

10. Plate 30–100 µL of the cell suspension on LB agar plates containing the appropriate antibiotics.
 Note: The plating volume depends on the transformation efficiency of DH5α™-T1R cells and the incubation duration at 37°C. Plate a range of volumes to ensure proper cell density. Do not allow cells to settle before aliquotting. If cells settle, mix by tapping the tube.

11. Spread cells by shaking vigorously in a circular motion, clockwise and counter clockwise for approximately 1–2 minutes.

12. Store the remaining transformation reaction at 4°C.

13. Invert the plates and incubate at 37°C for 16–18 hours.

14. Select 3 to 5 colonies and analyze by plasmid isolation, PCR, or sequencing.
 Note: Partially expressed lacZ genes containing the control mutation may result in colonies that are light blue on the inside and white on the outside. Light blue colonies should be considered mutant colonies and not wild-type.
Methylation Control

Introduction

This optional control procedure can be used to test the methylation reaction. Note that the GeneArt® Site-Directed Mutagenesis PLUS Kit provides sufficient reactions for 10 site-directed mutagenesis reactions and 1 mutagenesis control reaction. If you wish to perform the methylation control reaction, you will have to use the reagents set aside for one of the mutagenesis reactions.

Methylation Control Reaction

1. To determine methylation efficiency, set up an additional control sample containing all the components except SAM during PCR sample preparation.
2. Approximately 2 minutes before the end of incubation period at 37°C, pause the PCR program.
3. Transfer 2 µL of the two PCR samples (one with SAM and one without SAM) to autoclaved tubes containing 8 µL of 20 mM EDTA.
4. Thaw on ice two 50-µL vials of One Shot® MAX Efficiency® DH5α™-T1R® competent cells: one for the PCR/EDTA sample with SAM and one for the PCR/EDTA sample without SAM.
5. Proceed with the Transformation Procedure, as described on page 12.
6. Determine the methylation efficiency using the following formula:

 \[
 \% \text{ methylation} = \frac{\text{Total colonies (w/o SAM)} - \text{Total colonies (w/ SAM)}}{\text{Total colonies (w/o SAM)}}
 \]

 Expected efficiency: ≥ 90 percent.
Mutagenesis Control

Introduction

Use the pMSDM-White Vector and the Control Primer Mixes (included in the kit) as positive mutagenesis controls for The GeneArt® Site-Directed Mutagenesis PLUS Kit and for calculating the mutagenesis efficiency.

The mutant control plasmid produces white colonies on plates containing LB/Amp/X-gal. A successful methylation and mutagenesis reaction with all three control primer pairs reverts the lacZα gene into wild type, which produces blue colonies on plates containing LB/Amp/X-gal.

Note that the GeneArt® Site-Directed Mutagenesis PLUS Kit provides sufficient reactions for 10 site-directed mutagenesis reactions and 1 mutagenesis control reaction. If you have performed the methylation control reaction (see page 14), you will have to use the reagents set aside for one of the mutagenesis reactions to perform the mutagenesis control reaction.

Before Starting

For the mutagenesis control reaction, prepare LB agar plates with 100 µg/mL ampicillin and 30–100 µg/mL X-gal (see page 23 for ordering information) prior to transformation.

Mutagenesis Control Reactions

1. Prepare the following reaction mixture for methylation and mutagenesis:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X AccuPrime™ Pfx Reaction buffer</td>
<td>6 µL</td>
</tr>
<tr>
<td>10X Enhancer</td>
<td>6 µL</td>
</tr>
<tr>
<td>pMSDM-White Vector (20 ng/µL)</td>
<td>1.2 µL</td>
</tr>
<tr>
<td>DNA Methylase (4 U/µL)</td>
<td>1.2 µL</td>
</tr>
<tr>
<td>25X SAM</td>
<td>2.4 µL</td>
</tr>
<tr>
<td>AccuPrime™ Pfx (2.5 U/µL)</td>
<td>0.5 µL</td>
</tr>
<tr>
<td>PCR water</td>
<td>to 57 µL</td>
</tr>
</tbody>
</table>

2. Mix and aliquot the PCR mixture into three PCR tubes (Tubes 1, 2, and 3), each containing approximately 19 µL of the mix.

Continued on next page
Mutagenesis Control, continued

3. Add 1 μL of Control Primer Mix 1 into Tube 1, 1 μL of Control Primer Mix 2 into Tube 2, and 1 μL of Control Primer Mix 3 into Tube 3.

4. Perform PCR using the following parameters.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Duration</th>
<th>Number of Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>37°C</td>
<td>15–20 minutes</td>
<td>1</td>
</tr>
<tr>
<td>94°C</td>
<td>2 minutes</td>
<td></td>
</tr>
<tr>
<td>94°C</td>
<td>20 seconds</td>
<td></td>
</tr>
<tr>
<td>57°C</td>
<td>30 seconds</td>
<td>16 cycles</td>
</tr>
<tr>
<td>68°C</td>
<td>30 seconds–2.5 minutes*</td>
<td></td>
</tr>
<tr>
<td>68°C</td>
<td>1–5 minutes†</td>
<td>1</td>
</tr>
<tr>
<td>4°C</td>
<td>As necessary</td>
<td>1</td>
</tr>
</tbody>
</table>

*2.5 minutes for Tube 1, 30 seconds for Tubes 2 and 3.
†5 minutes for Tube 1, 1 minute for Tubes 2 and 3.

5. Set up the following 20-μL recombination reaction using the PCR products from page 15.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR water</td>
<td>6 μL</td>
</tr>
<tr>
<td>PCR product from Tube 1</td>
<td>2 μL</td>
</tr>
<tr>
<td>PCR product from Tube 2</td>
<td>2 μL</td>
</tr>
<tr>
<td>PCR product from Tube 3</td>
<td>2 μL</td>
</tr>
<tr>
<td>2X GeneArt® Enzyme Mix</td>
<td>10 μL</td>
</tr>
</tbody>
</table>

Note: Thaw the 2X GeneArt® Enzyme Mix on ice. The 2X enzyme mix may appear turbid. Mix the solution by briefly vortexing, and then very briefly centrifuging it. Do not centrifuge the solution at high speed.

6. Mix the reaction mixture well and incubate at room temperature for 15 minutes.

7. Stop the reaction by adding 1 μL 0.5 M EDTA. Mix well and place the tubes on ice.

8. Place the tubes on ice and immediately proceed to transformation (see page 12).

9. After transformation and incubation, count blue and white colonies on the plates.

Results: The percentage of blue colonies (wild-type) should be ≥85%.
Transformation Control

Introduction

Use the pUC19 plasmid supplied with the competent cells in the –80°C module to test the transformation efficiency.

Transformation Control Reaction

If you do not obtain the expected number of colonies, we recommend that you test the transformation efficiency of the competent cells. Transform One Shot® MAX Efficiency® DH5α™-T1™ competent cells with the supercoiled pUC19 plasmid included in the kit as described below.

1. Prepare LB agar plates containing 100 µg/mL ampicillin.
2. Transform 5 µL (50 pg) of pUC19 into 50 µL of competent cells.
3. Incubate the vial on ice for 30 minutes.
4. Incubate the vial for exactly 30 seconds in the 42°C water bath. Do not mix or shake.
5. Remove the vial from the 42°C bath and place on ice.
6. Add 250 µL of pre-warmed S.O.C. medium to each vial.
 Note: S.O.C. is a rich medium; sterile technique must be practiced to avoid contamination.
7. Place the vial in a microcentrifuge rack on its side and secure with tape to avoid loss of the vial. Incubate the vial at 37°C for exactly 1 hour in a shaking incubator set to 225 rpm.
8. Dilute the transformation reaction 1:100 and plate 30 µL on LB/Amp plates.
9. Incubate the plates overnight at 37°C and count colonies. Calculate transformation efficiency using the formula below.

Calculation

Calculate the transformation efficiency as transformants per 1 µg of plasmid DNA. Use the formula below to calculate transformation efficiency:

\[
\frac{\text{# of colonies}}{50 \text{ pg plasmid DNA}} \times \frac{10^6 \text{ pg}}{\mu\text{g}} \times \frac{300 \mu\text{L (total transformation volume)}}{30 \mu\text{L (plated)}} \times \frac{30 \mu\text{L (plated)}}{100 \text{ (dil'n factor)}} = \frac{\text{# of colonies}}{\mu\text{g plasmid DNA}}
\]

Expected transformation efficiency: ≥1 × 10⁹ cfu/µg supercoiled plasmid
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR product not visible</td>
<td>Too little DNA</td>
<td>Determine DNA concentration. Use up to 50 ng DNA per 50 µL reaction.</td>
</tr>
<tr>
<td>Poor quality of DNA</td>
<td>Purify new plasmid. We recommend using the PureLink® Quick Plasmid Miniprep Kit or the PureLink® Hi Pure Plasmid Maxiprep Kit (see page 23 for ordering information).</td>
<td></td>
</tr>
<tr>
<td>DNA polymerase</td>
<td>AccuPrime™ Pfx DNA Polymerase is recommended for The GeneArt® Site-Directed Mutagenesis PLUS Kit. Use 1 unit of AccuPrime™ Pfx DNA Polymerase for amplification.</td>
<td></td>
</tr>
<tr>
<td>PCR conditions</td>
<td>Optimize annealing temperature and extension time. We recommend an extension time of 30 seconds per 1 kb. However, you should experiment with different extension times.</td>
<td></td>
</tr>
<tr>
<td>Poor primer design</td>
<td>Use the GeneArt® Primer and Construct Design Tool to reduce potential secondary structure or increase primer length. The tool is available at https://rnaidesigner.invitrogen.com/oligoDesigner.</td>
<td></td>
</tr>
<tr>
<td>High background when testing mutagenesis reaction product</td>
<td>Inactive DNA methylase or inactive SAM</td>
<td>Test the activity of the DNA methylase and 25X SAM using the methylation control reaction on page 14. Note: The GeneArt® Site-Directed Mutagenesis PLUS Kit provides sufficient reactions for 10 site-directed mutagenesis reactions and 1 mutagenesis control reaction. If you wish to perform the methylation control reaction, you will have to use the reagents set aside for one of the mutagenesis reactions.</td>
</tr>
<tr>
<td></td>
<td>Too much DNA</td>
<td>Use no more than 50 ng of DNA per 50 µL of methylation reaction.</td>
</tr>
<tr>
<td></td>
<td>Over-amplification</td>
<td>Reduce PCR cycles to 12 for small plasmids and 15 for intermediate size plasmids.</td>
</tr>
<tr>
<td>Too few colonies</td>
<td>Dilution for plating is too high</td>
<td>Decrease dilution of transformants for plating.</td>
</tr>
<tr>
<td>No blue colonies on control plate Note: pMSDM-White Control Vector should render blue colonies when transformed into DH5α™-T1R cells</td>
<td>Inactive X-gal or insufficient amount of X-gal added to plate</td>
<td>Use a fresh stock of X-gal. Spread 100 µg/mL X-gal on LB plates.</td>
</tr>
</tbody>
</table>
Appendix A: Vectors

pMSDM-White Vector

The figure below shows the features of the pMSDM-White Vector. The sequence is available at www.lifetechnologies.com or by contacting Technical Support (see page 24).

Comments for pMSDM-White
5,032 nucleotides

Spectinomycin-\(\text{lacZ}\) fusion: bases 1–2,829
\(\text{lacZ}\) gene: bases 1,015–2,741
Ampicillin (\(\text{bla}\)) resistance gene: bases 3,143–4,000

Mutations:
“\(\text{C}\)→\(\text{T}\)” replacement: position 256
“A” deletion: position 480
“G” insertion: position 1,063
Appendix B: Tools for Primer Design

GeneArt® Primer and Construct Design Tool

Introduction

The GeneArt® Primer and Construct Design Tool is an intuitive, web-based tool to guide you when you are designing your oligonucleotide primers for multi-site mutagenesis. The tool minimizes the planning time required for designing the PCR primers, identifies potential pitfalls linked to your specific sequences, performs *in silico* mutagenesis using your sequences, and allows one-click online ordering for custom primers (for countries with enabled online ordering). The GeneArt® Primer and Construct Design Tool also provides you with a graphic representation of the final molecule containing the mutations as well as a downloadable GenBank file compatible with VectorNTI® and other software for molecular biology workflows. The GeneArt® Primer and Construct Design Tool is available at https://rnaidesigner.invitrogen.com/oligoDesigner.

Output example from GeneArt® Primer and Construct Design Tool

The example below shows the output from GeneArt® Primer and Construct Design Tool for a multi-site mutagenesis experiment. In this example, three mutations are introduced into the pTarget plasmid using three separate mutagenic primer pairs, because the mutations are placed sufficiently apart (see *GeneArt*® Mutagenic Primer Design Rules, see page 21). In addition to the graphical representation and sequences of the mutagenic primer pairs and the target plasmid, the tool also provides detailed instructions for performing the site-directed mutagenesis reaction.

pTarget

Continued on next page
The GeneArt® Primer and Construct Design Tool uses the following rules when designing oligonucleotide primers for multi-site mutagenesis.

- The tool restricts the size of the plasmid or gene to be mutagenized to 14 kb.
- For single-site mutagenesis using canonical bases (i.e., A, C, G, T), the tool places the following constraints:
 - If the mutated bases span a region of up to 12 bp, then 15 nt on each side of the most external mutations are non-editable.
 - If the mutated bases span a region between 12 and 25 bases, then 25 nt on each side of the most external mutations are non-editable.
 - Mutations spanning a region of >25 bp are not allowed.
- For single-site mutagenesis using degenerate bases (see page 22), the tool places the following constraints:
 - If the number of degenerate bases is ≤3, the mutation site is flanked by 15 nt of non-editable (i.e., non-mutagenic) sequences starting from the outer-most degenerate base(s) (i.e., on the most 5’ and 3’ position).
 - If the number of degenerate bases is between 3 and 12, the mutation site is flanked by 20 nt of non-editable (i.e., non-mutagenic) sequences starting from the outer-most degenerate bases.
 - Mutations spanning a region of >12 bp are not allowed.
- For single-site mutagenesis using degenerate bases, the tool allows up to 12 nt to be modified.
- For multi-site mutagenesis, 15 nt on each side of the most external mutations are non-editable.
- For multi-site mutagenesis, the tool designs a single primer of up to 80 nt if all three mutation sites are close enough that separate mutagenic primers would overlap.
- For multi-site mutagenesis, if there are more than 50 bases between two site modifications, the tool designs separate primers to capture these mutations.
- When possible, the tool designs primers with a sequence-specific partial melting temperature (T_m) of 60–68°C.
Degenerate Bases

IUPAC Notation for Degenerate Bases

Degenerate bases represent a position on a DNA sequence that can have multiple possible alternatives. Degenerate bases should not be confused with non-canonical bases because each particular degenerate base is in fact one of the four nucleotides commonly found in DNA (i.e., A, C, G, T).

Under the commonly used IUPAC (International Union of Pure and Applied Chemistry) system, nucleobases are represented by the first letters of their chemical names: Adenine, Cytosine, Guanine, and Thymine. This shorthand also includes eleven “ambiguity” or “degenerate” characters associated with every possible combination of the four DNA bases. The degenerate characters were designed to encode positional variations found among families of related genes. The IUPAC notation, including degenerate characters and suggested mnemonics, is shown in the table below.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Bases represented</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Adenine</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>Cytosine</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Guanine</td>
<td>G</td>
</tr>
<tr>
<td>T</td>
<td>Thymine</td>
<td>T</td>
</tr>
<tr>
<td>U</td>
<td>Uracil</td>
<td>U</td>
</tr>
<tr>
<td>W</td>
<td>Weak</td>
<td>A T</td>
</tr>
<tr>
<td>S</td>
<td>Strong</td>
<td>C G</td>
</tr>
<tr>
<td>M</td>
<td>Amino</td>
<td>A C</td>
</tr>
<tr>
<td>K</td>
<td>Keto</td>
<td>G T</td>
</tr>
<tr>
<td>R</td>
<td>PuRine</td>
<td>A G</td>
</tr>
<tr>
<td>Y</td>
<td>PYrimidine</td>
<td>C T</td>
</tr>
<tr>
<td>B</td>
<td>Not A (B comes after A)</td>
<td>C G T</td>
</tr>
<tr>
<td>D</td>
<td>Not C (D comes after C)</td>
<td>A G T</td>
</tr>
<tr>
<td>H</td>
<td>Not G (H comes after G)</td>
<td>A C T</td>
</tr>
<tr>
<td>V</td>
<td>Not T (V comes after T and U)</td>
<td>A C G</td>
</tr>
<tr>
<td>N</td>
<td>ANy base (not a gap)</td>
<td>A C G T</td>
</tr>
</tbody>
</table>
Appendix C: Ordering Information

Accessory Products

The following additional products may be used with The GeneArt® Site-Directed Mutagenesis PLUS Kit. For more information, visit www.lifetechnologies.com or contact Technical Support (see page 24).

<table>
<thead>
<tr>
<th>Product</th>
<th>Amount</th>
<th>Cat. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>One Shot® MAX Efficiency® DH5α™-T1R™</td>
<td>1 box (21 x 50 µL)</td>
<td>12297-016</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>200 mg</td>
<td>11593-027</td>
</tr>
<tr>
<td>X-gal</td>
<td>1 g</td>
<td>15520-018</td>
</tr>
<tr>
<td>AccuPrime™ Pfx DNA Polymerase*</td>
<td>200 reactions</td>
<td>12344-024</td>
</tr>
<tr>
<td></td>
<td>1,000 reactions</td>
<td>12344-032</td>
</tr>
<tr>
<td>PureLink® Quick Plasmid Miniprep Kit</td>
<td>50 preps</td>
<td>K2100-10</td>
</tr>
<tr>
<td>PureLink® Hi Pure Plasmid Maxiprep Kit</td>
<td>10 preps</td>
<td>K2100-06</td>
</tr>
</tbody>
</table>
Documentation and Support

Obtaining Support

Technical Support

For the latest services and support information for all locations, go to www.lifetechnologies.com.

At the website, you can:

- Access worldwide telephone and fax numbers to contact Technical Support and Sales facilities
- Search through frequently asked questions (FAQs)
- Submit a question directly to Technical Support (techsupport@lifetech.com)
- Search for user documents, SDSs, vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents
- Obtain information about customer training
- Download software updates and patches

Safety Data Sheets (SDS)

Safety Data Sheets (SDSs) are available at www.lifetechnologies.com/sds.

Limited Product Warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies’ General Terms and Conditions of Sale found on Life Technologies’ website at www.lifetechnologies.com/termsandconditions. If you have any questions, please contact Life Technologies at www.lifetechnologies.com/support.