Developing a Guided Procedure for Troubleshooting HPLC and UHPLC Systems

Susanne Fabel,¹ Rainer Bauder,² and Frank Steiner¹
¹Thermo Fisher Scientific, Germering, Germany, ²Thermo Fisher Scientific, Chelmsford, MA, U.S.A.
Overview

Purpose: Develop a robust, user-friendly, and fast generic approach for troubleshooting pharmaceutical HPLC and UHPLC assays.

Methods: Isocratic and gradient test mixtures are separated on a reference column for assessing performance of instrument and separation column.

Results: The chromatographic performance is evaluated by an application independent separation. Chromatographic performance indicators are compared with reference values and troubleshooting hints and recommendations are given automatically by using the capabilities of the Thermo Scientific™ Dionex™ Chromeleon™ Chromatography Data System (CDS) software.

Introduction

During sample analysis and interpretation things can go wrong. Problems can occur starting with sampling and sample preparation. Also during the actual analysis and reporting things can go wrong and might require corrective action. For methodical troubleshooting it is important to follow a systematic approach for finding the origin of the observed deviation from the expected performance. The presented work focuses on a troubleshooting solution which can easily differentiate between instrument or chemistry (i.e. column or mobile phase) issues. The concept of our new methodical troubleshooting solution is to identify key parameters of chromatographic performance using standardized test mixes run with standardized reference methods and a selected reference column. The test methods are uploaded as electronic workflows providing a completely setup system within a few mouse clicks. A fully automated and preprogrammed custom report offers immediate interpretation of the investigated troubleshooting parameters. Electronic workflows and reports are part of the software tools provided with the described troubleshooting solution.
Method

Liquid Chromatography System
Thermo Scientific™ Dionex™ UltiMate™ 3000 RS system with: degasser SRD-3400, binary pump HPG-3400RS, sampler WPS-3000TRS, column thermostat TCC-3000RS and UV- detector VWD-3400RS.
Thermo Scientific XPert Troubleshooting Solution (PN 3200.0001) consisting of Reference Column (Thermo Scientific™ Accucore™ XL C18, 3 x 100 mm, 4 μm, PN 74104-103030), XPert isocratic test mix, XPert gradient test mix, and eWorkflows™.

Data Analysis
Chromeleon CDS 7.2 with service release package SR1.

Isocratic Test Conditions
Mobile Phase: Water/Acetonitrile (50/50 v/v)
Flow rate: 640 μL/min
Temperature: 30°C
Injection Volume: 1 μL
Detection: 254 nm, 25 Hz data collection rate

Gradient Test Conditions
Mobile Phase: A-Water, B-Acetonitrile
Gradient: 0–3.8 min 40–95% B, 3.8–4.5 min 95% B, 4.5–6.5 min 40 %B
Flow rate: 800 μL/min
Temperature: 40°C
Injection Volume: 1 μL
Detection: 254 nm, 25 Hz data collection rate

FIGURE 1. Isocratic reference chromatogram.

FIGURE 2. Gradient reference chromatogram.
Key Performance Indicators
Chromatographic parameters of the reference separation in isocratic and gradient mode are processed automatically by the CDS. The investigated key indicators for judging the chromatographic performance are listed in table 1. For the isocratic test mode the o-Xylene (peak 5, Figure 1) is investigated. For the gradient test mode the indicators of octanophenone (peak 10, Figure 2) and butyrophene and benzophene as critical peak pair (peak 5/6) are evaluated.

TABLE 1. Investigated performance indicators.

<table>
<thead>
<tr>
<th>Isocratic test (Fig. 1)</th>
<th>Gradient test (Fig. 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retention time window</td>
<td>Retention time window</td>
</tr>
<tr>
<td>Retention time RSD</td>
<td>Retention time RSD</td>
</tr>
<tr>
<td>Peak asymmetry</td>
<td>Peak asymmetry</td>
</tr>
<tr>
<td>Peak area RSD</td>
<td>Peak area RSD</td>
</tr>
<tr>
<td>Theoretical plates</td>
<td>Resolution of critical peak pair</td>
</tr>
<tr>
<td>Capacity factor</td>
<td>Capacity factor</td>
</tr>
<tr>
<td>Generated back pressure</td>
<td>Pressure maximum</td>
</tr>
<tr>
<td>Number of peaks</td>
<td>Number of peaks</td>
</tr>
</tbody>
</table>

All chromatograms are integrated automatically. The calculated results are checked against specifications values which are embedded in the sequence table. The correct operation of all instrument parts and the characterization of appropriate fluidic connections is evaluated. Finally a final report is generated.

Results

Example: Out-of-Spec Result in Quality Control (QC)

Nevirapine is a non-nucleoside reverse transcriptase-inhibitor with activity against human immunodeficiency virus type 1 (HIV-1). The impurity analysis (see Figure 3) separates the active pharmaceutical ingredient (API, 2) from its impurities A (3), B(1) and C(4). The trendplot of an impurity control of a Nevirapine formulation shows out-of spec results related to the area of one impurity. The outlier result shows an relative area of the 25% for impurity B (Figure 3, Peak 1, bottom) compared to the in spec result of 0.03%.
FIGURE 3. Out-of-spec result in impurity analysis.

The interpretation of the result is performed according to the methodical troubleshooting workflow of Fig. 4.

FIGURE 4. Troubleshooting workflow.

(U)HPLC results questionable ➔ Install XPer column, load standards and eWorkflow, mobile phase ➔ Run isocratic or gradient method => immediately review tips in report

Test fails ➔ Review all details of XPer report applying system and system setup troubleshooting, rerun XPer, if recommended: perform maintenance or repair

Test passes ➔ Run XPer standards with original column, modify method accordingly (method transfer tools)

Initiate Instrument Service ➔ Perform validation or SST according to your SOPs, rerun XPer to benchmark application & system

Replace column ➔ Investigate application and verify sample or standard preparation
Step I – System Check: First the isocratic test mix is separated on the reference column by easy method installation using the eWorkflow. The results are immediately assessed by an report, showing that the system is in an operable status (Fig. 5)

FIGURE 5. Automatically evaluated parameters show operable system.

Step II – Column Check: After checking the system operability the application column performance is evaluated by running the troubleshooting methods. The methods are transferred from the reference column dimension to the application column dimension by using the method transfer tool which is part of the Chromelone CDS.

The resulting chromatogram of the isocratic test mix separation is shown in Fig. 6 (blue).

FIGURE 6. Isocratic test with application column.
The specification of “Peak number total” is not fulfilled and immediately a failed test report is given announcing the column failure as a cause and giving the recommendation to replace the column (Fig. 7).

FIGURE 7. Failed test result due to specification mismatch.

<table>
<thead>
<tr>
<th>Test Performance Goal Result</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. High Pressure Rise</td>
<td>Flange Pressure</td>
<td>Investigate pressure rise root cause</td>
</tr>
<tr>
<td>2. Split or double peaks</td>
<td>Flange Pressure</td>
<td>Investigate pressure rise root cause</td>
</tr>
<tr>
<td>3. Peak Number Total</td>
<td>Contamination on column or guard</td>
<td>Replace column or guard</td>
</tr>
<tr>
<td>4. Peak Number Total</td>
<td>Sample solvent too strong</td>
<td>Dilute sample or change solvent</td>
</tr>
<tr>
<td>5. Retention Time</td>
<td>Loss of integrity I/HPLC</td>
<td>Replace column</td>
</tr>
<tr>
<td>6. Retention Time</td>
<td>Loss of integrity I/HPLC</td>
<td>Replace column</td>
</tr>
<tr>
<td>7. Total Peak Area</td>
<td>Column degradation</td>
<td>Change column</td>
</tr>
<tr>
<td>8. Total Peak Area</td>
<td>Column degradation</td>
<td>Change column</td>
</tr>
<tr>
<td>9. Capacity Factor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step III – Replacing the Column

After replacing the column rerunning the isocratic test mix, the operability of the column is given again (Fig. 6, black). The interpretation of the out-of-spec result of the Nevirapine impurity can be assessed as column failure.

Step IV – Performance Monitoring

Long term monitoring of chromatographic performance indicators is implemented in the routine workflow by periodically running the test methods on the separation column allowing an early intervention. The visualization is done without exporting by just using the predefined data view settings of the XPert Troubleshooting Solution.

FIGURE 8. Using Chromeleon CDS 7.2 trendplot functionality for performance monitoring.
Conclusion and Outlook

- A standardized check run consisting of reference column and reference test mixture generates all fundamental chromatographic parameters required for system and column troubleshooting independent from the originally used method.

- Automatically evaluated data with instant customized report provide helpful indication on the source of problems and suggested actions to remedy them. Troubleshooting is simplified for LC beginners and allows building own knowledge and practical troubleshooting competence, while making the user aware of key performance indicators and introducing performance monitoring for an early intervention if things go wrong.

- The XPert troubleshooting solution is the next generation of automated troubleshooting and performance monitoring and builds on the high degree of functionality of the Chromatography Data System (CDS) software.

www.thermofisher.com

©2016 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details.