Fluorescence Polarization
Contents

Trademarks and Patents

Foreword to the Fourth Edition

Chapter 1 - Introduction
 Introduction
 Theory
 Anisotropy or Polarization?
 The Beacon® Fluorescence Polarization System
 High Throughput Screening (HTS) Using FP
 Limitations of FP

Chapter 2 - Receptor-Ligand Binding
 Introduction
 Competitive Binding Assays for Nuclear Receptors
 GST-Src Homology Domain Binding to a Fluorescein-Phosphopeptide

Chapter 3 - Immunoassays
 Detection of Kinase Activity Using Fluorescence Polarization (Patent Pending)
 Tyrosine Kinase Assays
 Serine/Threonine Kinase Assays
 Detection of Tyrosine Phosphatase Activity Using Fluorescence Polarization (Patent Pending)
 Protein Tyrosine Phosphatase Assay
 Inhibition of TC PTP by Sodium Vanadate
 Quantitation of Antigen: FP Immunoassay for Epidermal Growth Factor
 Introduction
 Materials and Methods
 Results and Discussion
 Useful Literature
 Characterization of a Single-chain Antibody
 Introduction
 Materials and Methods
 Method A (from Dandliker et al., 1981)
 Method B (from Lundblad et al., 1996)
 Results and Discussion

Chapter 4 - DNA-Protein Binding
 DNA-Protein Binding
Chapter 5 - Degradative Assays .. 5-1
Degradative assays ... 5-2
A Quantitative Amylase Assay in Malt and Molasses Samples 5-12
Introduction .. 5-12
Materials and Methods .. 5-12
Results and Discussion .. 5-13
Acknowledgments .. 5-14

Chapter 6 - DNA Hybridization and Detection 6-1
Fluorescence Polarization Detection of DNA Hybridization 6-2
Introduction .. 6-2
Materials and Methods .. 6-2
Results and Discussion .. 6-3
Useful Literature ... 6-3
Detection of Amplified DNA by Fluorescence Polarization 6-4
Introduction .. 6-4
Materials and Methods .. 6-4
Results and Discussion .. 6-5
A Quantitative Reverse Transcriptase Assay Using Fluorescence Polarization .. 6-6
Introduction .. 6-6
Materials and Methods .. 6-7
Results and Discussion .. 6-7

Chapter 7 - Theory of Binding Data Analysis 7-1
Clark's Theory ... 7-2
Non-specific Binding ... 7-3
Determination of Binding Constants 7-4
Saturation Function .. 7-6
Klotz Plot ... 7-6
Scatchard Analysis .. 7-7
Non-specific Binding .. 7-7
Negative Cooperativity .. 7-7
Positive Cooperativity .. 7-8
Chemical Instability at Low Concentrations 7-8
Multiple Classes of Binding Sites 7-8
Hill Plot and Cooperativity ... 7-9
Non-linear, Least-Squares, Curve Fitting 7-10
Multiple Classes of Binding Sites 7-11
Chapter 8 - Analysis of FP Binding Data

Determination of Binding Constants

Definitions

Polarization vs. Anisotropy

Relationship of Anisotropy to Bound/Free Ratio

Changes in Fluorescence Intensity and Fluorescence Lifetime

Seeing a Signal

Equilibrium Binding: Experimental Design

Incubation Time to Reach Equilibrium

Competing a Binding Isotherm

Analysis of Binding Constants

Competition Experiments

General Considerations

Receptor-Ligand Competition Experiments

Kinetic Experiments

Determination of the Dissociation Rate Constant, k_d

Determination of the Association Rate Constant, k_a
Trademarks and Patents

Trademarks
Invitrogen and Beacon are registered trademarks of Invitrogen Corporation. Fluormone is a trademark of Invitrogen Corporation. HTRF® is a registered trademark of Packard Instrument Company. Prism® is a registered trademark of GraphPad™ Software, Inc. GraphPad™ is a trademark of GraphPad™ Software, Inc. TRITON® is a registered trademark of Union Carbide Chemicals and Plastics Co., Inc. All other trademarks are the property of their respective owners.

Patents

The method for detecting reverse transcriptase activity using fluorescence polarization is covered by U.S. Patent No. 6,100,039. Other U.S. and international patents pending.
The theory of fluorescence polarization (FP) was first described by Jean Perrin in 1926 and expanded by Gregorio Weber and others in the 1950's. Surprisingly, even into the late 1980s this powerful technique was almost unknown to all but the diagnostic industry and biophysicists. Typically, the only exposure biochemists and molecular biologists have had to FP is a single chapter in Joseph Lakowicz’s seminal work, “Principles of Fluorescence Spectroscopy”.

In 1993, we set out to investigate FP for the study of biomolecular interactions and develop it as a core technology for PanVera. Unfortunately, there were no instruments available that could measure FP easily. Typical FP instruments were hand-built from analytical fluorescence spectrophotometers and often required manual operation.

Realizing the need for an easy-to-use, sensitive, bench-top FP instrument we began marketing the Beacon® instrument in 1994. Two years later, we introduced the Beacon® 2000, which boasted better sensitivity than laser-based analytical instruments, used disposable glass test tubes, temperature controls, and a minimum volume requirement of only 100 µL.

PanVera published the First Edition of the Fluorescence Polarization Application Guide in 1995. It was filled with data generated on the Beacon® 2000 and how-to information. We knew that until FP was demystified for the at-large scientific community, the technology’s full potential would not be realized. With this guide, it was our intention to empirically demonstrate the versatile nature of FP and how it could be used to observe a wide range of biomolecular interactions. FP differed dramatically from all other methods in use at that time in that it was a truly homogeneous technique, required no separation of bound and free species, no radioactivity, and allowed real-time measurements to be made directly in solution. We also highlighted some of the differences one must consider when designing FP-based assays. For example, FP differs from a traditional radioactive binding assay in that the small fluorescent ligand is held at a low concentration while the larger binding partner is titrated into it. Therefore, basic binding equations had to be discussed and modified slightly to accommodate these differences.

It did not take long for researchers in drug discovery to realize that FP is a format well suited for high throughput screening (HTS). Instrumentation is now available that can measure FP in high-density microplates very rapidly and with great precision. Assays require very few additions and no separation steps. No immobilization of reaction components is required, reducing the potential for artifacts generated by attaching molecules to solid supports. The method is non-radioactive, improving safety and reducing the costs associated with waste disposal. We continue to build on our extensive knowledge base and long history in this field to produce innovative assays for drug discovery.

It is our hope that the Fourth Edition of this Guide will help the novice gain a basic understanding of FP while serving as a desktop reference to the initiate.
CHAPTER 1

Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1-2</td>
</tr>
<tr>
<td>Theory</td>
<td>1-2</td>
</tr>
<tr>
<td>Anisotropy or Polarization?</td>
<td>1-4</td>
</tr>
<tr>
<td>The Beacon® 2000 Fluorescence Polarization System</td>
<td>1-5</td>
</tr>
<tr>
<td>High Throughput Screening (HTS) Using FP</td>
<td>1-5</td>
</tr>
<tr>
<td>Limitations of FP</td>
<td>1-7</td>
</tr>
</tbody>
</table>
Introduction

Fluorescence polarization (FP) is a powerful tool for studying molecular interactions by monitoring changes in the apparent size of fluorescently-labeled or inherently fluorescent molecules, often referred to as the tracer or ligand (Checovich et al., 1995; Heyduk et al., 1996; Jameson and Sawyer, 1995; Nasir and Jolley, 1999). It is unique among methods used to analyze molecular binding because it gives a direct, nearly instantaneous measure of a tracer’s bound/free ratio.

FP enables the researcher to view molecular binding events in solution, allowing true equilibrium analysis into the low picomolar range (i.e., with as little as 10 fmol/mL of sample stoichiometrically labeled with fluorescein). FP measurements do not affect samples, so they can be treated and reanalyzed in order to ascertain the effect on binding by such changes as pH, temperature, and salt concentration. In addition, because FP measurements are taken in “real-time,” experiments are not limited to equilibrium binding studies. Kinetic analysis of association and dissociation reactions are routine with fluorescence polarization.

Because FP is a truly homogeneous technique, it does not require the separation of bound and free species. Methods that depend on separation are not only more time-consuming, but they disturb the reaction equilibrium and therefore prevent accurate quantification of binding. Alternative homogeneous fluorescent techniques, such as fluorescence resonance energy transfer (FRET) and time-resolved fluorescence or TR-FRET (Pope et al., 1999) require multiple labeling reactions instead of one as in FP.

Theory

First described by Perrin (1926), the theory of FP is based on the observation that when a small fluorescent molecule is excited with plane-polarized light, the emitted light is largely depolarized because molecules tumble rapidly in solution during its fluorescence lifetime (the time between excitation and emission). However, if the tracer is bound by a larger molecule its effective molecular volume is increased. The tracer’s rotation is slowed so that the emitted light is in the same plane as the excitation energy. The bound and free states of the tracer each have an intrinsic polarization value: a high value for the bound state and a low value for the free state. The measured polarization is a weighted average of the two values, thus providing a direct measure of the fraction of tracer bound to receptor. An increase in molecular volume due to receptor-ligand (Bolger et al., 1998), DNA-protein (Lundblad et al., 1996; Ozers et al., 1997), or peptide-protein binding (Wu et al., 1997) or a decrease in molecular volume due to dissociation or enzymatic degradation (Bolger and Checovich, 1994; Bolger and Thompson, 1994) can be followed by FP.

As illustrated in Equation 1.1, the polarization value of a molecule is proportional to the molecule’s rotational relaxation time, or the time it takes to rotate through an angle of 68.5°. Rotational relaxation time is related to viscosity (η), absolute temperature (T), molecular volume (V), and the gas constant (R).

Equation 1.1: Polarization value \propto Rotational relaxation time $\approx \frac{3\eta V}{RT}$
Therefore, if viscosity and temperature are held constant, polarization is directly related to the molecular volume (i.e., molecular size). Changes in molecular volume can result from binding or dissociation of two or more molecules, degradation, or from conformational changes.

Fluorescence polarization detection is described schematically in Figure 1-1. Monochromatic light passes through a vertical polarizing filter and excites fluorescent molecules in the sample tube. Only those molecules that are oriented properly in the vertically polarized plane absorb light, become excited, and subsequently emit light. The emitted light is measured in both the horizontal and vertical planes.

Polarization is calculated as shown in Equation 1.2 and is a measure of the extent of molecular rotation during the period between excitation and emission.

Equation 1.2: Polarization value \((P) = \frac{\text{Intensity}_{\text{vertical}} \times 2 \times \text{Intensity}_{\text{horizontal}}}{\text{Intensity}_{\text{vertical}} \times \text{Intensity}_{\text{horizontal}}}\)

The polarization value, \(P\), being a ratio of light intensities, is a dimensionless number, often expressed in millipolarization units (1 Polarization Unit = 1000 mP Units).

Illustrated examples of complexes with high and low polarization values are shown in Figure 1-2. Small molecules rotate quickly during the excited state, and upon emission, have low polarization values. Large molecules, in this case caused by the binding of a second molecule, rotate little during the excited state, and therefore have high polarization values.
Anisotropy or Polarization?

The term “anisotropy” is sometimes used in literature associated with the FP field. Polarization and anisotropy are both derived from the measured vertical and horizontal intensities. The values are mathematically related and easily interconverted. Both values represent a weighted average of the bound versus unbound states of the fluorescent molecule.

While anisotropy and polarization share the same content of information, anisotropy values are mathematically easier to manipulate in many FP studies. A population of excited, identical molecules in solution will all have the same polarization value. If a portion of these molecules undergoes an apparent size change such that their rotational relaxation rate also changes, the observed polarization value represents an average of the component polarizations of all of the molecules. The polarization value of a mixture of molecules was described by Weber (1952) and is shown here as Equation 1.3:

$$\text{Equation 1.3: } \left(\frac{1}{P} - \frac{1}{3} \right)^{-1} = \sum_{i=1}^{n} f_i \left(\frac{1}{P_i} - \frac{1}{3} \right)^{-1}$$

where each fluorophore species has a polarization value (P_i) and fractional fluorescence intensity (f_i). On the other hand, the additivity of anisotropies is given by a simpler equation:

$$\text{Equation 1.4: } A = \sum_{i=1}^{n} f_i \times A_i$$

Due to mathematical simplicity, anisotropy values are sometimes preferred because it is easier to deconvolute anisotropy values into their component values than it is with polarization values. It should be noted again that in the majority of applications, anisotropy does not give any additional information over polarization. The issue of using anisotropy versus polarization is discussed further in Chapter 8.

We generally use the term “Fluorescence Polarization” instead of “Fluorescence Anisotropy” because FP is most often the term used to describe the entire technology. In many applications that involve a minimum of curve analysis, we use polarization out of habit and tradition and because the error involved when using polarization instead of anisotropy is nominal.

The Beacon® 2000 Fluorescence Polarization System

Historically, fluorescence polarization had been used worldwide in the human diagnostic market for more than a decade (Jolley, 1981), but it had seen limited application in the broader research market due to the lack of sensitive, versatile, and affordable instrumentation. Invitrogen developed one of the original instruments that met all of these requirements—the Beacon® 2000 Fluorescence Polarization System (Invitrogen Part No. P2300). The Beacon® 2000 System, which is a single-tube instrument, continues to provide a rapid and reliable way to measure equilibrium binding or molecular degradation for a wide range of biological molecules including proteins, nucleic acids, carbohydrates, lipids, and drugs. The Beacon® 2000 Instrument was designed specifically to meet research needs. It is a compact, benchtop instrument that takes measurements on samples directly in solution and provides picomolar sensitivity (i.e., low fmol/mL of sample stoichiometrically labeled with fluorescein). Applications as varied as protein-DNA interactions, immunoassays, protease assays, epitope mapping, DNA hybridization, and receptor-ligand binding studies are easily performed on the Beacon® 2000 System.

Because FP is now routinely used in the high throughput screening environment, newer and faster multiwell plate-based instruments are often the tool of choice for these industrial applications.

High Throughput screening (HTS) using FP

The tremendous challenge facing high throughput screening (HTS) scientists today is to screen more compounds against more targets using more quantitative and robust methods without spending more money. Genomics efforts have flooded drug discovery with potential new drug targets (Drews, 1996). New parallel combinatorial synthesis methods are providing more compounds that must be screened for activity (Gallop et al., 1994). The process for identifying new lead compounds must become more efficient. In order to increase the efficiency of HTS, new screening methods must be faster, cheaper, and more quantitative. Assays need to be miniaturized to decrease reagent costs and consumption of compound libraries. New assay formats must be homogeneous, requiring no separation of reaction components.

Fluorescent methods are rapidly becoming the primary detection format in HTS because they now approach the sensitivity of radioactive techniques and are amenable to homogeneous and miniaturized formats (Pope et al., 1999). The increasing use of homogeneous fluorescence methods continues to be driven by a mandate within large pharmaceutical companies to significantly reduce the use of radioactivity in all facets of pharmaceutical research due to waste management issues. Homogeneous formats are desirable because these formats are “mix-and-read” without wash steps, multiple incubations, or separations required. Because FP measurements are made directly in solution, no perturbation of the sample is required, making the measurement faster and more quantitative than conventional methods.

References:
Since 1995, there have been a number of publications, listed in Table 1-1 (adapted from Owicki, 2000), detailing the development of HTS assays using FP. As these articles demonstrate, FP has been most applicable when the HTS assay involves measuring changes in the fraction-bound of a small, fluorescently-labeled molecule and a large, unlabeled molecule. The kinase assays are actually FPIAs (FP immunoassays) in which a phosphopeptide formed in a kinase reaction displaces a fluorescently-labeled phosphopeptide from a phospho-specific antibody. The nuclear receptor assays are ligand displacement assays where the affinity of test compounds for a receptor are measured by their ability to displace a bound fluorescent ligand. These and other assay types are described in detail later in this Guide.

<table>
<thead>
<tr>
<th>Publication</th>
<th>Assay Type/Target Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deshpande et al. (1999)</td>
<td>Kinase</td>
</tr>
<tr>
<td>Parker et al. (2000)</td>
<td>Kinase</td>
</tr>
<tr>
<td>Wu et al. (2000)</td>
<td>Kinase</td>
</tr>
<tr>
<td>Parker et al. (2000)</td>
<td>Phosphatase</td>
</tr>
<tr>
<td>Parker et al. (2000)</td>
<td>Nuclear Receptors</td>
</tr>
<tr>
<td>Keating et al. (2000)</td>
<td>Protein-Protein</td>
</tr>
<tr>
<td>Lynch et al. (1997)</td>
<td>Protein-Protein</td>
</tr>
<tr>
<td>Lynch et al. (1999)</td>
<td>Protein-Protein</td>
</tr>
<tr>
<td>Wu et al. (1997)</td>
<td>Protein-Protein</td>
</tr>
<tr>
<td>Jolley (1996)</td>
<td>Protease</td>
</tr>
<tr>
<td>Levine et al. (1997)</td>
<td>Protease</td>
</tr>
<tr>
<td>Pope et al. (1999)</td>
<td>Protease</td>
</tr>
<tr>
<td>Chen et al. (1999)</td>
<td>Genomics</td>
</tr>
<tr>
<td>Pope et al. (1999)</td>
<td>Nucleic Acid</td>
</tr>
<tr>
<td>Allen et al. (2000)</td>
<td>GPCR</td>
</tr>
<tr>
<td>Banks et al. (2000)</td>
<td>GPCR</td>
</tr>
<tr>
<td>Pope et al. (1999)</td>
<td>Topoisomerase</td>
</tr>
<tr>
<td>Pope et al. (1999)</td>
<td>Cytokine Receptors</td>
</tr>
<tr>
<td>Li et al. (2000)</td>
<td>Transferase</td>
</tr>
<tr>
<td>Zhao et al. (1999)</td>
<td>Antimicrobials</td>
</tr>
<tr>
<td>Kauvar et al. (1995)</td>
<td>Protein-fluorescent probe binding</td>
</tr>
<tr>
<td>Sportsman et al. (1997)</td>
<td>Protein-fluorescent probe binding</td>
</tr>
</tbody>
</table>

The purpose of this Guide is to give the reader an intuitive feel for the utility of fluorescence polarization. HTS scientists will continue to increase their use of FP due to its unique combination of simplicity, speed, and robustness. Additional improvements in multiwell instrumentation, and the discovery of longer-lifetime and longer-wavelength fluorophores will expand its use even further.
Limitations of FP

FP requires relatively large changes in molecular volume for maximum signal (change in mP value). The FP value increases with molecular weight, but reaches a plateau level dependent on the fluorescence lifetime of the fluorophore. For a discussion of the impact of lifetime on FP values, see Pope et al. (1999). For example, the lifetime of fluorescein is 4 nanoseconds, which is about the same amount of time required for a small molecule (<10 kDa) to randomize its orientation relative to the incident plane of excitation energy. The resulting fluorescence will therefore be depolarized. Binding of this molecule to a larger one will slow down the tumbling of the complex and the fluorescence will remain polarized. A lifetime of 4 nanoseconds is not optimum for observing the binding of a large protein (>30 kDa) to other proteins because the fluorescence is already highly polarized.

Being a ratiometric technique, FP is resistant to absorbance or color quenching from library compounds. However, fluorescence from these library compounds can cause artifacts. This can be dealt with directly by pre-reading the fluorescence in a well before addition of the fluorescent reagent. The background fluorescence can then be subtracted out before the FP value is calculated. Performing background subtraction on individual wells is often not possible during a primary screen, but usually performed in follow up screening on “flagged” compounds that demonstrated significant changes in fluorescence intensity. The probability of finding background fluorescence problems is reduced at higher wavelengths. Therefore using red-shifted probes in place of fluorescein will minimize background fluorescence interference.

Table 1-2 (adapted from Pope et al., 1999) provides a brief listing of advantages and disadvantages of the most prominent homogeneous fluorescence detection methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence Intensity (FLINT)</td>
<td>• Simple</td>
<td>• No information for quality control</td>
</tr>
<tr>
<td></td>
<td>• Suitable for fluorogenic assays</td>
<td>• Sensitive to inner-filter and auto-fluorescence interference</td>
</tr>
<tr>
<td></td>
<td>• READily miniaturized</td>
<td></td>
</tr>
<tr>
<td>Fluorescence Polarization (FP)</td>
<td>• simple, predictive</td>
<td>• local motion effects</td>
</tr>
<tr>
<td></td>
<td>• insensitive to inner-filter effects</td>
<td>• suitability limited by lifetime of dye, ligand size, and molecular weight change</td>
</tr>
<tr>
<td></td>
<td>• ratiometric technique</td>
<td>• can suffer from auto-fluorescence</td>
</tr>
<tr>
<td></td>
<td>• suitable for small (<10 kDa) ligands</td>
<td></td>
</tr>
<tr>
<td>Fluorescence Resonance Energy Transfer (FRET)</td>
<td>• suitable for short inter/intramolecular distances (<5 nm)</td>
<td>• requires multiple labels</td>
</tr>
<tr>
<td></td>
<td>• range of available donors and acceptors</td>
<td>• sensitivity to inner-filter and auto-fluorescence interference</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• limited to short distances to obtain high signal changes</td>
</tr>
<tr>
<td>Time-Resolved Energy Transfer (TR-FRET)</td>
<td>• robust</td>
<td>• requires multiple complex labels</td>
</tr>
<tr>
<td></td>
<td>• suitable for long distances (5–10 nm)</td>
<td>• limited choice of donors/acceptors</td>
</tr>
<tr>
<td></td>
<td>• reduced auto-fluorescence interference</td>
<td></td>
</tr>
</tbody>
</table>
