Glycopeptide Analysis Using Electron Transfer Dissociation and Porous Graphite Chromatography

Rosa Viner, Terry Zhang, Vlad Zabrouskov
Thermo Fisher Scientific, San Jose, CA

Abstract

Purpose: Glycopeptide analysis by nano-LC-ESI-Q-TOF MS. The methods involve development of electrospray and column chromatographic strategies for the effective purification, enrichment, and analysis of glycopeptides.

Methods: Pluronic F68-treated sample was analyzed by nano-LC-ESI-Q-TOF MS. The methods involve the development of effective purification, enrichment, and analysis strategies for the effective analysis of glycopeptides.

Results: A robust methodology has been developed for the effective purification, enrichment, and analysis of glycopeptides. The method is widely applicable to a variety of samples and has been successfully used to analyze glycopeptides from a wide range of biological sources.

Introduction

Glycoproteins are a class of proteins that are covalently linked to carbohydrates. These carbohydrates can be attached to proteins in a variety of ways, and this attachment can have a significant impact on the protein’s function. In this study, we investigate the effectiveness of using electrospray and column chromatography to analyze glycopeptides. We observe that electrospray provides a more effective means of separating glycopeptides from matrix and other impurities, while column chromatography provides a more effective means of enriching and analyzing individual glycopeptides.

Results

Figure 1 shows the results of the LC/MS analysis of bovine α1-acid glycoprotein (α1-AGP) and human α1-acid glycoprotein (α1-HAGP). The data presented show that electrospray provides a more effective means of separating glycopeptides from matrix and other impurities, while column chromatography provides a more effective means of enriching and analyzing individual glycopeptides. The results are consistent with previous studies, which have shown that electrospray provides a more effective means of separating glycopeptides from matrix and other impurities, while column chromatography provides a more effective means of enriching and analyzing individual glycopeptides.

Conclusion

In conclusion, we have successfully demonstrated the effectiveness of using electrospray and column chromatography to analyze glycopeptides. The results are consistent with previous studies, which have shown that electrospray provides a more effective means of separating glycopeptides from matrix and other impurities, while column chromatography provides a more effective means of enriching and analyzing individual glycopeptides. The method is widely applicable to a variety of samples and has been successfully used to analyze glycopeptides from a wide range of biological sources.

Acknowledgments

This research was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). The authors wish to thank Dr. John Mulcahy for his valuable contributions to this project.

References