CEDIA® Amphetamine/Ecstasy Assay

Intended Use

The CEDIA® Amphetamines/Ecstasy assay is an in-vitro diagnostic medical device intended for the qualitative and semiquantitative assay of amphetamines and ecstasy in human urine.

Summary and Explanation of The Test

Amphetamines, amphetamine derivatives and ecstasy drugs are classified as sympathomimetic amines with CNS stimulant activity.1-4 They are psychologically and physiologically addicting, their effects include excitement, alertness, euphoria, decreased appetite, and reduced sense of fatigue.4 Side effects at low doses include irritability, anxiety, insomnia, blurred vision, increased blood pressure, and heart palpitations.2,3 Chronic, high dose users may develop psychosis that can be indistinguishable from acute schizophrenia.3,4

Amphetamines are rapidly absorbed from the gastrointestinal tract and widely distributed throughout the body.2-4 Approximately 70% of a dose is eliminated in urine in the first 24 hours after administration, and depending on urinary pH, about 30% of the dose is excreted unchanged and the remainder as metabolites. Approximately 62% of a methamphetamine dose is eliminated in urine in the first 24 hours after administration, with about 43% of the dose excreted unchanged and the remainder as metabolites, including amphetamine.4,5 Amphetamines may remain detectable in urine for 3-4 days after administration.2,4 MDMA (3,4-methylenedioxymethamphetamine) is known to be metabolized by N-demethylation to methylenedioxymethamphetamine (MDMA). The human metabolism of MDMA has not been studied; urine concentrations in fatal cases of up to 160 mg/L have been recorded and are indicative of excretion of substantial portions of unchanged drug.3,4

The CEDIA Amphetamines/Ecstasy assay uses recombinant DNA technology (US Patent No. 4708929) to produce a unique homogeneous enzyme immunoassay system.1 This assay is based on the bacterial enzyme β-galactosidase, which has been genetically engineered into two inactive fragments. These fragments spontaneously reassociate to form fully active enzyme that, in the assay format, cleaves a substrate, generating a color change that can be measured spectrophotometrically.

In the assay, drug in the sample competes with drug conjugated to one inactive fragment of β-galactosidase for antibody binding site. If drug is present in the sample, it binds to antibody, leaving the inactive enzyme fragments free to form active enzyme. If drug is not present in the sample, antibody binds to drug conjugated to the inactive fragment, inhibiting the reassociation of inactive β-galactosidase fragments, and no active enzyme will be formed. The amount of active enzyme formed and resultant absorbance change are proportional to the amount of drug present in the sample.

Reagents

1. **EA Reconstitution Buffer:** Contains piperazine-N, N-bis-[2-ethanesulfonic acid], buffer salts, stabilizer, and preservative. 4.5 mg/L monocular antibody to MDMA.
2. **ED Reagent:** Contains 0.156 g/L Enzyme Acceptor, 7.081 mg/L monoclonal antibodies to d-amphetamine and 7.081 mg/L mouse monoclonal antibodies reactive to d-methamphetamine, buffer salts, detergent, and preservative.
3. **ED Reconstitution Buffer:** Contains piperazine-N, N-bis-[2-ethanesulfonic acid] buffer, buffer salts, and preservative.
4. **ED Reagent:** Contains 7.12 μg/L Enzyme Donor conjugated to d-amphetamine, 11.3 μg/L Enzyme Donor conjugated to d-methamphetamine, 6.0 μg/L Enzyme Donor conjugated to MDMA, 1.67 g/L chlorophenol red-p-D-galactopyranoside, stabilizer, and preservative.

Additional Materials

- Alternative Bar Code Labels (Cat. Nos. 100104 and 100103 only. Refer to analyzer specific application sheet for directions on usage.) Empty analyzer bottle for EA/ED solution pour-over (Cat. No. 100040 only).
- Analyte label for EA/ED solution pour-over (Cat. No. 100040 only).
- Microgenics, a part of Thermo Fisher Scientific.

Precautions and Warnings

The reagents contain sodium azide. Avoid contact with skin and mucous membranes. Flush affected areas with copious amounts of water. Get immediate medical attention for eyes, or if ingested. Sodium azide may react with lead or copper plumbing to form potentially explosive metal azides. When disposing of such reagents, always flush with large volumes of water to prevent azide build-up. Clean exposed metal surfaces with 10% sodium hydroxide.

Reagent Preparation and Storage

See below for preparation of the solutions for Hitachi analyzers. For all other analyzers, refer to the analyzer specific application sheet. Remove the kit from refrigerated storage immediately prior to preparation of the solutions.

NOTE 1: The components supplied in this kit are intended for use as an integral unit. Do not mix components from different lots.

NOTE 2: Avoid cross-contamination of reagents by matching reagent stoppers to the proper reagent bottle. The R2 Solution should be yellow-orange in color. A dark red or purple-red color indicates that the reagent has been contaminated and must be discarded.

NOTE 3: The R1 and R2 Solutions must be at the reagent compartment storage temperature of the analyzer before performing the assay. Refer to the analyzer specific application sheet for additional information.

NOTE 4: To ensure reconstituted EA reagent stability, protect from prolonged, continuous exposure to bright light.

Store reagents at 2-8°C. DO NOT FREEZE. For stability of the unopened components, refer to the box or bottle labels for the expiration date.

R1 Solution: 45 days refrigerated on analyzer or at 2-8°C.
R2 Solution: 45 days refrigerated on analyzer or at 2-8°C.

Specimen Collection and Handling

Collect urine samples in clean glass or plastic containers. Centrifuge specimens with high turbidity before testing. Treat human urine as potentially infectious material. Obtain another sample for testing if adulteration of the sample is suspected. Adulteration of urine samples can affect the test results.

Assay Procedure

Chemistry analyzers capable of maintaining a constant temperature, pipetting samples, mixing reagents, measuring enzymatic rates and timing the reaction accurately can be used to perform this assay. Application sheets with specific instruments parameters are available from Microgenics, a part of Thermo Fisher Scientific.

Additional barcode labels are provided for semi-quantitative determination with the 17 mL and 85 mL kits only. To use, over label each bottle with the correct label.
Quality Control and Calibration

Qualitative assay

For qualitative analysis of samples, use the Multi-Drug Calibrator, Primary or Secondary Cutoffs (depending on the selected cutoff), to analyze results. See the analyzer specific application sheet.

Semiquantitative assay

500 ng/mL Cutoff Protocol: For semiquantitative analysis of samples, use the Multi-Drug Calibrator, Secondary Cutoffs, Primary Cutoffs, Negative Calibrator, and Multi-Drug Intermediate Calibrator.

1000 ng/mL Cutoff Protocol: For semiquantitative analysis of samples, use the Multi-Drug Calibrator, Primary Cutoffs, Negative Calibrator, and the Multi-Drug Intermediate and High Calibrators.

Good laboratory practice suggests that controls be tested each day patient samples are tested and each time calibration is performed. It is recommended that two levels of controls be run; one 25% above the cutoff; the other 25% below the cutoff. Recalibrate the test if reagents are changed or if control results are outside of established limits. Base assessment of quality control on the values obtained for the controls, which should fall within specified limits. If any trends or sudden shifts in values are detected, review all operating parameters. Contact Customer Technical Support for further assistance. All quality control requirements should be performed in conformance with local, state and/or federal regulations or accreditation requirements.

Results and Expected Values

Qualitative results

The Multi-Drug Calibrator, Primary or Secondary Cutoffs, (containing 1000 ng/mL and 500 ng/mL d-meth-amphetamine, respectively), is used as a reference in distinguishing between positive and negative samples. Samples producing a response value equal to or greater than the response value of the calibrator are considered positive. Samples producing a response value less than the response value of the calibrator are considered negative. Refer to analyzer specific application sheet for additional information.

Semiquantitative results

500 ng/mL Cutoff Protocol: The Multi-Drug Calibrator, Secondary Cutoffs, used in conjunction with the Negative and the Multi-Drug Calibrator, Primary Cutoffs and the Multi-Drug Intermediate Calibrator, can be used to estimate relative concentration of amphetamines. Refer to the analyzer specific application sheet for detailed information.

1000 ng/mL Cutoff Protocol: The Multi-Drug Calibrator, Primary Cutoffs, used in conjunction with the Negative and the Multi-Drug Intermediate and High Calibrators, can be used to estimate relative concentration of amphetamines. Refer to the analyzer specific application sheet for detailed information.

Care should be taken when reporting concentration results since there are many other factors that may influence a urine test result such as fluid intake and other biological factors.

Limitations

1. A positive test result indicates the presence of amphetamines; it does not indicate or measure intoxication.
2. Other substances and/or factors not listed may interfere with the test and cause false results (e.g., technical or procedural errors).

Specific Performance Characteristics

Typical performance results obtained on the Hitachi 717 analyzer are shown below:| The results obtained in your laboratory may differ from these data.

Precision

Measured precision studies, using packaged reagents, calibrators, and controls yielded the following results with a Hitachi 717 analyzer using NCCLS modified replication experiment guidelines.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration Tested (ng/mL)</th>
<th>% Cross-Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-Amphetamine</td>
<td>1,000</td>
<td>104</td>
</tr>
<tr>
<td>l-Amphetamine</td>
<td>40,000</td>
<td>1.0</td>
</tr>
<tr>
<td>d,l-Amphetamine</td>
<td>1,250</td>
<td>88</td>
</tr>
<tr>
<td>d,l-Methamphetamine</td>
<td>1,000</td>
<td>77</td>
</tr>
<tr>
<td>d-Methamphetamine</td>
<td>1,000</td>
<td>100</td>
</tr>
<tr>
<td>l-Methamphetamine</td>
<td>8,000</td>
<td>18</td>
</tr>
<tr>
<td>3,4-Methylenedioxy-amphetamine (MDA)</td>
<td>1,000</td>
<td>116</td>
</tr>
<tr>
<td>3,4-Methylenedioxy-methamphetamine (MDMA)</td>
<td>500</td>
<td>196</td>
</tr>
<tr>
<td>3,4-Methylenedioxy-ethylamphetamine (MDEA)</td>
<td>300</td>
<td>172</td>
</tr>
<tr>
<td>N-Methylbenzodioxo-zolbutanamine (MBDB)</td>
<td>900</td>
<td>121</td>
</tr>
<tr>
<td>Benzedioxazolo-butanamine (BDB)</td>
<td>1,000</td>
<td>76</td>
</tr>
<tr>
<td>Phentermine</td>
<td>25,000</td>
<td>3.3</td>
</tr>
<tr>
<td>d,l-Phenylpropanolamine</td>
<td>500,000</td>
<td>0.3</td>
</tr>
<tr>
<td>d-Pseudoephedrine</td>
<td>160,000</td>
<td>0.9</td>
</tr>
<tr>
<td>l-Ephedrine</td>
<td>250,000</td>
<td>0.5</td>
</tr>
<tr>
<td>p-Methoxyamphetamine (PMA)</td>
<td>2,000</td>
<td>24</td>
</tr>
<tr>
<td>p-Methoxymethamphetamine (PMMA)</td>
<td>500</td>
<td>100</td>
</tr>
</tbody>
</table>

* Determined using the 500 ng/mL cutoff protocol.
** Determined using the 1000 ng/mL cutoff protocol.

Accuracy

Urine samples were assayed with the CEDIA Amphetamines/Ecstasy assay on the Hitachi 717 analyzer using GC/MS and commercially available CEDIA DAU Amphetamines assay as references. Results were as follows:

A. 500 ng/mL Cutoff

<table>
<thead>
<tr>
<th>GC/MS</th>
<th>+</th>
<th>-</th>
<th>Total Precision</th>
</tr>
</thead>
</table>
| CEDIA (Amphetamine/Ecstasy) | + | 1 | 158 | 100%
| CEDIA (Amphetamine) | - | 17| 18| 100%

B. 1,000 ng/mL Cutoff

<table>
<thead>
<tr>
<th>GC/MS</th>
<th>+</th>
<th>-</th>
<th>Total Precision</th>
</tr>
</thead>
</table>
| CEDIA (Amphetamine/Ecstasy) | + | 18 | 144 | 100%
| CEDIA (Amphetamine) | - | 0 | 0 | 100%

Specificity

The following compounds when tested with the CEDIA Amphetamines/Ecstasy assay, 1000 ng/mL cutoff protocol, yielded the following percent cross-reactivity results:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration Tested (ng/mL)</th>
<th>% Cross-Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>d-Amphetamine</td>
<td>1,000</td>
<td>104</td>
</tr>
<tr>
<td>l-Amphetamine</td>
<td>40,000</td>
<td>1.0</td>
</tr>
<tr>
<td>d,l-Amphetamine</td>
<td>1,250</td>
<td>88</td>
</tr>
<tr>
<td>d,l-Methamphetamine</td>
<td>1,000</td>
<td>77</td>
</tr>
<tr>
<td>d-Methamphetamine</td>
<td>1,000</td>
<td>100</td>
</tr>
<tr>
<td>l-Methamphetamine</td>
<td>8,000</td>
<td>18</td>
</tr>
<tr>
<td>3,4-Methylenedioxy-amphetamine (MDA)</td>
<td>1,000</td>
<td>116</td>
</tr>
<tr>
<td>3,4-Methylenedioxy-methamphetamine (MDMA)</td>
<td>500</td>
<td>196</td>
</tr>
<tr>
<td>3,4-Methylenedioxy-ethylamphetamine (MDEA)</td>
<td>300</td>
<td>172</td>
</tr>
<tr>
<td>N-Methylbenzodioxo-zolbutanamine (MBDB)</td>
<td>900</td>
<td>121</td>
</tr>
<tr>
<td>Benzedioxazolo-butanamine (BDB)</td>
<td>1,000</td>
<td>76</td>
</tr>
<tr>
<td>Phentermine</td>
<td>25,000</td>
<td>3.3</td>
</tr>
<tr>
<td>d,l-Phenylpropanolamine</td>
<td>500,000</td>
<td>0.3</td>
</tr>
<tr>
<td>d-Pseudoephedrine</td>
<td>160,000</td>
<td>0.9</td>
</tr>
<tr>
<td>l-Ephedrine</td>
<td>250,000</td>
<td>0.5</td>
</tr>
<tr>
<td>p-Methoxyamphetamine (PMA)</td>
<td>2,000</td>
<td>24</td>
</tr>
<tr>
<td>p-Methoxymethamphetamine (PMMA)</td>
<td>500</td>
<td>100</td>
</tr>
</tbody>
</table>
Structurally unrelated compounds were tested with the CEDIA Amphetamines/Ecstasy assay, 500 ng/mL cutoff protocol, and gave a negative response when tested at the concentrations listed.

<table>
<thead>
<tr>
<th>Compound</th>
<th>ng/mL</th>
<th>Compound</th>
<th>ng/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaminophen</td>
<td>1,000,000</td>
<td>Levothyroxine</td>
<td>100,000</td>
</tr>
<tr>
<td>Acetylsalicylic acid</td>
<td>1,000,000</td>
<td>Methadone</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>1,000,000</td>
<td>Morphine</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Benzoyldecongonine</td>
<td>1,000,000</td>
<td>Nifedipine</td>
<td>50,000</td>
</tr>
<tr>
<td>Captopril</td>
<td>1,000,000</td>
<td>Phencyclidine</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Chlordiazepoxide</td>
<td>250,000</td>
<td>Phenobarbital</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Cimetidine</td>
<td>500,000</td>
<td>d-Propoxyphene</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Codeine</td>
<td>1,000,000</td>
<td>Ranitidine</td>
<td>250,000</td>
</tr>
<tr>
<td>Diazepam</td>
<td>100,000</td>
<td>Salicylic acid</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Digoxin</td>
<td>1,000,000</td>
<td>Secobarbital</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Enalapril</td>
<td>1,000,000</td>
<td>11-nor-Δ9-THC-COOH</td>
<td>10,000</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>500,000</td>
<td>Verapamil</td>
<td>1,000,000</td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>1,000,000</td>
<td>Tolmetin</td>
<td>500,000</td>
</tr>
</tbody>
</table>

No interference was observed from the following substances added to the normal endogenous concentrations found in urine when tested with the CEDIA Amphetamines/Ecstasy assay:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentration</th>
<th>Substance</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>< 1.0 g/dL</td>
<td>Hemoglobin</td>
<td>< 0.3 g/dL</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>< 1.5 g/dL</td>
<td>Human serum albumin</td>
<td>< 0.5 g/dL</td>
</tr>
<tr>
<td>Creatinine</td>
<td>< 0.5 g/dL</td>
<td>Oxalic acid</td>
<td>< 0.1 g/dL</td>
</tr>
<tr>
<td>Ethanol</td>
<td>< 1.0 g/dL</td>
<td>Riboflavin</td>
<td>< 7.5 mg/dL</td>
</tr>
<tr>
<td>Galactose</td>
<td>< 10 mg/dL</td>
<td>Sodium Chloride</td>
<td>< 0.6 g/dL</td>
</tr>
<tr>
<td>γ-globulin</td>
<td>< 0.5 g/dL</td>
<td>Urea</td>
<td>< 2.0 g/dL</td>
</tr>
<tr>
<td>Glucose</td>
<td>< 1.5 g/dL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitivity

For the Qualitative application, the limit of detection (LOD) was 35 ng/mL and 75 ng/mL for the 500 ng/mL and 1000 ng/mL cutoff protocols, respectively.

For the Semiquantitative application, the LOD was 41 ng/mL and 99 ng/mL for the 500 ng/mL and 1000 ng/mL cutoff protocols, respectively.

References

9. Data on traceability are on file at Microgenics Corporation, a part of Thermo Fisher Scientific.

For insert updates go to: www.thermoscientific.com/diagnostics

Other countries:
Please contact your local Thermo Fisher Scientific representative.

CEDIA is a registered trademark of Roche Diagnostics.