MaV203 Competent Yeast Cells, Library Scale

Catalog no. 11281-011 Size: 1.1 mL
(Do not store in liquid nitrogen)

Description
MaV203 Competent Yeast Cells have been developed for use with the ProQuest™ Two-Hybrid System to facilitate library-scale transformations. A single transformation using 250 μL of these highly competent cells yields ≥1 × 10⁶ colonies. MaV203 contains deletions in the endogenous GAL4 and GAL80 genes for use with most GAL4-based two-hybrid systems. This strain has been constructed with three GAL4-inducible reporter genes for identification of interacting fusion proteins: GAL1-lacZ, HIS3-UAS GAL1::HIS3 and the counterselectable SPAL10::URA3 (1-3). MaV203 is also auxotrophic for leucine (leu2) and tryptophan (trp1-901), allowing for the selection of yeast transformed with GAL4 DNA binding domain (DB) vectors and GAL4 activation domain (AD) vectors (e.g., pDRL.eu and pPC86 from the ProQuest™ Two-Hybrid System). MaV203 also contains the recessive resistance alleles can1 and leu2 which are useful for plasmid shuffling.

Component Amount per Vial
MaV203 Competent Yeast Cells 2 × 550 μL
PEG/Lithium Acetate (LiAc) Solution 5 × 1.5 mL
pMAB12 DNA, 0.25 μg/μL 10 μl
pMAB37 DNA, 0.25 μg/μL 10 μl

Genotype
MATα; leu2-3,112; trp1-901; his3Δ200; ade2-101; can1; GAL1::lacZ; HIS3-UASGAL1::HIS3; SPAL10::URA3.

Note: While the genotype of MaV203 is ade2Δ, the strain remains white upon starvation for adenine or amino acids, but retains an ade2 deficiency.

Control Plasmids
The control DNAs pMAB37 (TRP1) and pMAB12 (LEU12) provided with this kit are used to confirm the transformation efficiency of the cells and that the selection plates were prepared correctly. These plasmids do not contain the elements necessary to do a screen with the ProQuest™ Two-Hybrid System.

Part No. 11281011 MAN0000945 Rev. date: 12 Jan 2011

MaV203 Competent Yeast Cells, Library Scale

Catalog no. 11281-011 Size: 1.1 mL
(Do not store in liquid nitrogen)

Description
MaV203 Competent Yeast Cells have been developed for use with the ProQuest™ Two-Hybrid System to facilitate library-scale transformations. A single transformation using 250 μL of these highly competent cells yields ≥1 × 10⁶ colonies. MaV203 contains deletions in the endogenous GAL4 and GAL80 genes for use with most GAL4-based two-hybrid systems. This strain has been constructed with three GAL4-inducible reporter genes for identification of interacting fusion proteins: GAL1-lacZ, HIS3-UAS GAL1::HIS3 and the counterselectable SPAL10::URA3 (1-3). MaV203 is also auxotrophic for leucine (leu2) and tryptophan (trp1-901), allowing for the selection of yeast transformed with GAL4 DNA binding domain (DB) vectors and GAL4 activation domain (AD) vectors (e.g., pDRL.eu and pPC86 from the ProQuest™ Two-Hybrid System). MaV203 also contains the recessive resistance alleles can1 and leu2 which are useful for plasmid shuffling.

Component Amount per Vial
MaV203 Competent Yeast Cells 2 × 550 μL
PEG/Lithium Acetate (LiAc) Solution 5 × 1.5 mL
pMAB12 DNA, 0.25 μg/μL 10 μl
pMAB37 DNA, 0.25 μg/μL 10 μl

Genotype
MATα; leu2-3,112; trp1-901; his3Δ200; ade2-101; can1; pMAB12 DNA, 0.25 μg/μL 10 μl

Note: While the genotype of MaV203 is ade2Δ, the strain remains white upon starvation for adenine or amino acids, but retains an ade2 deficiency.

Control Plasmids
The control DNAs pMAB37 (TRP1) and pMAB12 (LEU12) provided with this kit are used to confirm the transformation efficiency of the cells and that the selection plates were prepared correctly. These plasmids do not contain the elements necessary to do a screen with the ProQuest™ Two-Hybrid System.

Part No. 11281011 MAN0000945 Rev. date: 12 Jan 2011
Library Scale Transformation Procedure

500 μL of cells are expected to generate ≥2 x 10^4 colonies (enough for one library screen). Note: You must determine the optimum concentration of 3AT for DNA binding domain vectors containing test gene X prior to library transformation.

1. Thaw the PEG/LiAc Solution in a beaker containing room temperature water before the assay. Mix the solution well before dispensing.
2. Thaw competent cells by placing in a 30°C water bath for 90 seconds. Do not allow the cells to remain at 30°C longer than 90 seconds. Proceed immediately to step 3. Steps 3, 4, and 5 can be done at room temperature.
3. After the cells are completely thawed, invert the cells several times. Transfer 250 μL to two 1.5- or 50-mL polypropylene tubes (see Note 1). Do not vortex the cells. Transfer 25 μL of cells to two 1.5-mL microcentrifuge tubes and simultaneously perform the control assay (see next page).
4. To each 250 μL aliquot of cells, add 10 μg (±0.2 μg/μL) of DNA binding domain vector containing a test gene and the 10 μg (±0.2 μg/μL) of activation domain vector containing a library to be screened. Mix well by swirling the tubes. Note: The total volume of DNA added to the transformation reaction must not exceed 100 μL.
5. Add 1.5 mL of the PEG/LiAc Solution to each tube. Mix well by swirling the tubes until all of the components are homogeneous.
6. Incubate for 30 minutes in a 30°C water bath. Swirl the tubes occasionally (every 10 minutes) to resuspend the components.
7. Add 88 μL of DMSO to each tube (see Note 2). Swirl the tube to mix.
8. Heat shock the cells for 20 minutes in a 42°C water bath. Swirl the tubes occasionally.
9. Centrifuge each tube for 5 minutes at 1800 rpm (200–400 × g).
10. Carefully discard the supernatant and resuspend each pellet in 8 mL of autoclaved saline (0.9% NaCl). Combine the resuspensions into one tube.
11. Remove 100 μL and dilute 1:100 and 1:1000 in autoclaved saline. Plate 100 μL of each dilution on 10-cm SC-Leu-Trp plates. Incubate plates at 30°C for 60–72 hours.
12. For the remaining mixture, plate 400 μL aliquots onto forty 15-cm SC-Leu-Trp-His3AT plates.
13. Incubate the plates for 3 days at 30°C. For use with the ProQuest™ Two-Hybrid System, follow the replica cleaning procedures outlined in the manual.

Control Transformation Procedure

1. Add 4 μL of pMAB37 DNA and 4 μL of pMAB12 DNA to one 25 μL aliquot of cells and mix well by swirling. Do not add DNA to the second 25 μL aliquot.
2. Add 180 μL PEG/LiAc Solution to the tubes and mix well by inversion. Be sure the components are homogeneous.
3. Incubate for 30 minutes in a 30°C water bath. Mix occasionally.
4. Add 10.8 μL of DMSO and mix well by inversion.
5. Heat shock for 20 minutes in a 42°C water bath. Swirl the tubes occasionally.
6. Centrifuge for 5 minutes at low speed (1800 rpm; 200–400 × g). Carefully remove the supernatant and discard.
7. Carefully discard the supernatant and resuspend each pellet in 1 mL of autoclaved saline by gentle pipetting.
8. Dilute the cells 1:100 and 1:1,000 in autoclaved saline. Plate 100 μL of each dilution on 10-cm SC-Leu-Trp plates.
9. Incubate plates at 30°C for 72 hours. The expected number of colonies per reaction is ≥5 x 10^4 (see Note 3).

Notes

1. Do not freeze thaw. Competent yeast can only be thawed once without dramatic loss in competency.
2. For best results, use fresh DMSO from an unopened bottle. DMSO which has been stored at ~20°C also works well.
3. Number of colonies per transformation reaction = Colonies/plate × dilution factor. For example, if 75 colonies are counted when 100 μL of a 1:100 dilution are plated, the calculation would be:

\[
75 \times \frac{1 \text{ mL}}{0.1 \text{ mL plated}} = 75 \times 10^4 \text{ colonies/reaction}
\]

References

Library Scale Transformation Procedure

500 μL of cells are expected to generate ≥2 × 10^5 colonies (enough for one library screen). Note: You must determine the optimum concentration of 3AT for DNA binding domain vectors containing test gene X prior to library transformation.

1. Thaw the PEG/LiAc Solution in a beaker containing room temperature water before the assay. Mix the solution well before dispensing.

2. Thaw competent cells by placing in a 30°C water bath for 90 seconds. Do not allow the cells to remain at 30°C longer than 90 seconds. Proceed immediately to step 3. Steps 3, 4, and 5 can be done at room temperature.

3. After the cells are completely thawed, invert the cells several times. Transfer 250 μL to two 15- or 50-mL polypropylene tubes (see Note 1). Do not vortex the cells. Transfer 25 μL of cells to two 1.5-mL microcentrifuge tubes and simultaneously perform the control assay (see next page).

4. To each 250 μL aliquot of cells, add 10 μg (≥0.2 μg/μL) of DNA binding domain vector containing a test gene and the 10 μg (≥0.2 μg/μL) of activation domain vector containing a library to be screened. Mix well by swirling the tubes. Note: The total volume of DNA added to the transformation reaction must not exceed 100 μL.

5. Add 1.5 mL of the PEG/LiAc Solution to each tube. Mix well by swirling the tubes until all of the components are homogeneous.

6. Incubate for 30 minutes in a 30°C water bath. Swirl the tubes occasionally (every 10 minutes) to resuspend the components.

7. Add 88 μL of DMSO to each tube (see Note 2). Swirl the tube to mix.

8. Heat shock the cells for 20 minutes in a 42°C water bath. Swirl the tubes occasionally.

9. Centrifuge each tube for 5 minutes at 1800 rpm (200–400 × g).

10. Carefully discard the supernatant and resuspend each pellet in 8 mL of autoclaved saline (0.9% NaCl). Combine the resuspensions into one tube.

11. Remove 100 μL and dilute 1:100 and 1:1,000 in autoclaved saline. Plate 100 μL of each dilution on 10-cm SC-Leu-Trp plates. Incubate plates at 30°C for 60–72 hours.

12. For the remaining mixture, plate 400 μL aliquots onto forty 15-cm SC-Leu-Trp-His+3AT plates.

13. Incubate the plates for 3 days at 30°C. For use with the ProQuest™ Two-Hybrid System, follow the replica cleaning procedures outlined in the manual.

Control Transformation Procedure

1. Add 4 μL of pMAB37 DNA and 4 μL of pMAB12 DNA to one 25 μL aliquot of cells and mix well by swirling. Do not add DNA to the second 25 μL aliquot.

2. Add 180 μL PEG/LiAc Solution to the tubes and mix well by inversion. Be sure the components are homogeneous.

3. Incubate for 30 minutes in a 30°C water bath. Mix occasionally.

4. Add 10.8 μL of DMSO and mix well by inversion.

5. Heat shock for 20 minutes in a 42°C water bath. Swirl the tubes occasionally.

6. Centrifuge for 5 minutes at low speed (1800 rpm; 200–400 × g). Carefully remove the supernatant and discard.

7. Carefully discard the supernatant and resuspend each pellet in 1 mL of autoclaved saline by gentle pipetting.

8. Dilute the cells 1:100 and 1:1,000 in autoclaved saline. Plate 100 μL of each dilution on 10-cm SC-Leu-Trp plates.

9. Incubate plates at 30°C for 72 hours. The expected number of colonies per reaction is ≥5 × 10^5 (see Note 3).

Notes

1. Do not freeze thaw. Competent yeast can only be thawed once without dramatic loss in competency.

2. For best results, use fresh DMSO from an unopened bottle. DMSO which has been stored at −20°C also works well.

3. Number of colonies per transformation reaction = Colonies/plate × dilution factor. For example, if 75 colonies are counted when 100 μL of a 1:100 dilution are plated, the calculation would be: 75 × 1 mL × 10^4 = 7.5 × 10^5 colonies/reaction

References

MaV203 Yeast Competent Cells, Library Scale

Catalog no. 11281-011

Size: 1.1 mL

Store at —80°C

(Do not store in liquid nitrogen)

Description

MaV203 Yeast Competent Cells have been developed for use with the ProQuest™ Two-Hybrid System to facilitate library-scale transformations. A single transformation using 250 μL of these highly competent cells yields ≥10^6 colonies. MaV203 contains deletions in the endogenous GAL4 and GAL80 genes for use with most GAL4-based two-hybrid systems. This strain has been constructed with three GAL4-inducible reporter genes for identification of interacting fusion proteins: GAL1-lacz; HIS3-LEU2-HIS3 and the counterselectable SPAL10–URA3 (1-3). MaV203 is also auxotrophic for leucine (leu2) and tryptophan (trp1–901), allowing for the selection of yeast transformed with GAL4 DNA binding domain (DB) vectors and GAL4 activation domain (AD) vectors (e.g., pDBLeu and pPC86 from the ProQuest™ Two-Hybrid System). MaV203 also contains the recessive resistance alleles ade2 and can5 which are useful for plasmid shuffling.

Component

MaV203 Yeast Competent Cells

Amount per Vial

2 × 550 μL

PEG/Lithium Acetate (LiAc) Solution

5 × 1.5 mL

pMAB12 DNA, 0.25 μg/μL

10 μL

pMAB37 DNA, 0.25 μg/μL

10 μL

Genotype

MATα; leu2-3,112; trp1–901; his3Δ200; ade2-101; can1Δ; gal4A; gal80A; GAL1–lacz; HIS3–LEU2–HIS3; SPAL10–URA3.

Note: While the genotype of MaV203 is ade2Δ, the strain remains white upon starvation for adenine or amino acids, but retains an ade2Δ deficiency.

Control Plasmids

The control DNAs pMAB37 (TRP1) and pMAB12 (LEU12) provided with this kit are used to confirm the transformation efficiency of the cells and that the selection plates were prepared correctly. These plasmids do not contain the elements necessary to do a screen with the ProQuest™ Two-Hybrid System.

Part No. 11281011

Rev. date: 12 Jan 2011

MaV203 Yeast Competent Cells, Library Scale

Catalog no. 11281-011

Size: 1.1 mL

Store at —80°C

(Do not store in liquid nitrogen)

Description

MaV203 Yeast Competent Cells have been developed for use with the ProQuest™ Two-Hybrid System to facilitate library-scale transformations. A single transformation using 250 μL of these highly competent cells yields ≥10^6 colonies. MaV203 contains deletions in the endogenous GAL4 and GAL80 genes for use with most GAL4-based two-hybrid systems. This strain has been constructed with three GAL4-inducible reporter genes for identification of interacting fusion proteins: GAL1–lacz; HIS3-LEU2-HIS3 and the counterselectable SPAL10–URA3 (1-3). MaV203 is also auxotrophic for leucine (leu2) and tryptophan (trp1–901), allowing for the selection of yeast transformed with GAL4 DNA binding domain (DB) vectors and GAL4 activation domain (AD) vectors (e.g., pDBLeu and pPC86 from the ProQuest™ Two-Hybrid System). MaV203 also contains the recessive resistance alleles ade2 and can5 which are useful for plasmid shuffling.

Component

MaV203 Yeast Competent Cells

Amount per Vial

2 × 550 μL

PEG/Lithium Acetate (LiAc) Solution

5 × 1.5 mL

pMAB12 DNA, 0.25 μg/μL

10 μL

pMAB37 DNA, 0.25 μg/μL

10 μL

Genotype

MATα; leu2-3,112; trp1–901; his3Δ200; ade2-101; can1Δ; gal4A; gal80A; GAL1–lacz; HIS3–LEU2–HIS3; SPAL10–URA3.

Note: While the genotype of MaV203 is ade2Δ, the strain remains white upon starvation for adenine or amino acids, but retains an ade2Δ deficiency.

Control Plasmids

The control DNAs pMAB37 (TRP1) and pMAB12 (LEU12) provided with this kit are used to confirm the transformation efficiency of the cells and that the selection plates were prepared correctly. These plasmids do not contain the elements necessary to do a screen with the ProQuest™ Two-Hybrid System.

Part No. 11281011

Rev. date: 12 Jan 2011