

100 bp DNA Ladder

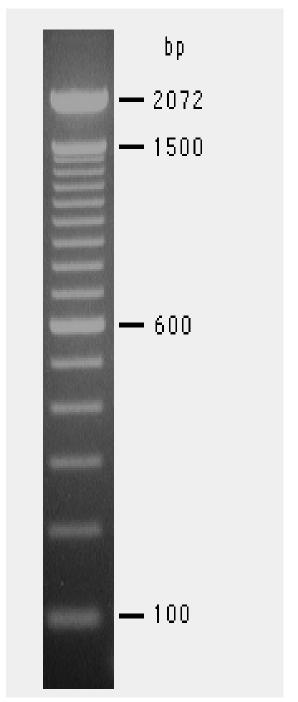
Cat. No. 15628-050 Size: 250 μg Concentration: 1 μg/μl Store at -20°C.

Description:

The 100 bp DNA Ladder consists of 15 blunt-ended fragments between 100 and 1500 bp in multiples of 100 bp and an additional fragment at 2072 bp. The 600 bp band is approximately 2 to 3 times brighter than the other ladder bands to provide internal orientation. This ladder is not designed for quantitation.

Storage Buffer:

10 mM Tris-HC1 (pH 7.5) 1 mM EDTA


Recommended Procedure:

A final concentration of 20 mM NaCl is recommended for gel electrophoresis. Apply approximately $0.1~\mu g$ of ladder per mm lane width. **Do not heat** before loading.

Quality Control

Agarose gel analysis shows that the bands between 100 to 1500 bp are distinguishable. The 600 bp band must be more intense than any other band except the band at 2072 bp.

MAN0001291 15628050.PPS Rev. date: 19 Jun 2001

100 bp DNA Ladder
0.5 μg/lane
20/ agarese sel steined with ethidium h

2% agarose gel stained with ethidium bromide.

Note:

During 2% agarose gel electrophoresis with tris-acetate (pH 7.6) as the running buffer, bromophenol blue migrates near the 100-bp fragment. The 100-bp band migrates behind the bromophenol blue marker on 6% polyacrylamide gels with tris-borate (pH 8.0) as the running buffer.

Part of the 600-bp band may migrate anomalously slowly in polyacrylamide gels (1,2,3). This band may appear as an extra band near or on top of the 700-bp band.

References:

- 1. Hsieh, C., et al. (1991) *Mol. Gen. Genet.* 225, 25.
- 2. Stellwagen, N.C. (1983) *Biochemistry 22*, 6186.
- 3. Jordan, H. and Hartley, J. (1997) *Focus*[®] *19*, 9.

Labeling Protocols:

The 100 bp DNA Ladder can be radioactively labeled by T4 DNA polymerase or T4 polynucleotide kinase. T4 DNA polymerase is recommended because higher specific activity is achieved with less ³²P input. The ladder may contain oligoribonucleotides which are invisible with ethidium bromide staining, but may be labeled by the T4 polynucleotide kinase exchange reaction.

T4 DNA Polymerase Labeling Protocol

- 1. Exonuclease Reaction (Degradation of DNA from both 3'-ends)
 - a. To a 1.5-ml microcentrifuge tube on ice, add the following:
 5X T4 DNA polymerase reaction buffer [165 mM Tris acetate (pH 7.9), 330 mM sodium acetate, 50 mM magnesium acetate,

2.5 mM DTT, 500 μg/ml BSA] 4 μl 100 bp DNA Ladder 10 μg T4 DNA polymerase 40 units Autoclaved water to 20 μl

- b. Make sure all components are at the bottom of the tube. Mix thoroughly, but not vigorously. Centrifuge briefly.
- c. Incubate 2 min in a 25°C water bath. Cool reaction vial on ice.
- 2. Resynthesis Reaction (Fill-in)

This reaction will resynthesize the degraded DNA strands and yield specific activities of $0.5\text{-}2 \times 10^6$ cpm/µg.

a. Place into the reaction vial which is sitting in ice after the exonuclease reaction:

Autoclaved water	\dots 8 μ 1
5X T4 DNA polymerase reaction buffer	6 µl
dATP (2 mM)	5 μl
dGTP (2 mM)	5 μl
dTTP (2 mM).	5 μl
$[\alpha - ^{32}P]dCTP$ (3000 Ci/mmol; 10 mCi/ml)	

b. Mix thoroughly. Centrifuge briefly. Incubate 2 min at 37°C, then add 5 μl of 2 mM dCTP.

Continued on next page

- c. Incubate 2 min at 37°C. Stop reaction by adding 2.5 μl of 0.5 M EDTA. Centrifuge for 10 s.
- d. The cpm incorporated is determined by adding 1 μl of reaction to 24 μl of 250 mM NaCl, 25 mM EDTA. Spot 5 μl of dilution on a glass fiber filter. Place filter in 10% (w/v) TCA + 1% (w/v) pyrophosphate.
 Wash filter 3 times with 5% (w/v) TCA and then 2 times with ethanol. The filter is dried and then counted using an appropriate scintillant.
- e. Add 5 μ l 0.1% (w/v) bromophenol blue, 0.1 mM EDTA, 50% (v/v) glycerol to the sample.
- f. Load 1×10^5 cpm in a lane.

5' DNA Terminus Labeling Protocol (Phosphate Exchange Reaction)

This reaction will yield specific activities of approximately 250,000 cpm/µg.

1. Add the following components to a 0.5-ml microcentrifuge tube in the following order:

Autoclaved water	11 µl
100 bp DNA Ladder (5 μg)	5 µl
*5X exchange reaction buffer [250 mM imidazole (pH 6.4), 1.5 mN	1 ADP,
60 mM MgCl ₂ , 75 mM 2-mercaptoethanol]	5 µl
$[\gamma^{-32}P]ATP (10 \mu Ci/\mu l)$	3 µl
*T4 polynucleotide kinase (5 or 10 U/µl)	
*For ordering purposes:	·
T4 Polynucleotide Kinase Exchange Reaction Buffer: 10456-010	
T4 Polynucleotide Kinase: 18004-010, 18004-028	

- 2. Incubate the reaction mixture at 37°C for 30 min. Increasing reaction times beyond 30 min will not increase labeling of the DNA.
- 3. Stop the reaction by adding 1 μ l of 0.5 M EDTA. Centrifuge for 10 s.
- 4. Determine radioactive incorporation as above.
- 5. Add 5 μ l 0.1% (w/v) bromophenol blue, 0.1 mM EDTA, 50% (v/v) glycerol to the sample.
- 6. Load 1×10^5 cpm in a lane.

©2013 Life Technologies Corporation. All rights reserved. The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.

Headquarters

5791 Van Allen Way | Carlsbad, CA 92008 USA Phone +1 760 603 7200 | Toll Free in USA 800 955 6288

For support visit

 $www.lifetechnologies.com/support\ or\ email\ techsupport @lifetech.com/support or\ email\ techsupport or\ email\ emai$

