PROTOCOL

To prepare several parallel reactions and to minimize the possibility of pipetting errors, prepare a PCR master mix by mixing water, buffer, dNTPs, primers and ThermoPrime Taq DNA polymerase. Prepare sufficient master mix for the number of reactions plus one extra. Aliquot the master mix into individual PCR tubes and then add template DNA.

1. Gently vortex and briefly centrifuge all solutions after thawing.

2. Place a thin-walled PCR tube on ice and add the following components for each 25 µL reaction:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X Reaction Buffer with 15 mM MgCl₂</td>
<td>2.5 µL</td>
<td>1X</td>
</tr>
<tr>
<td>dNTP Mix, 2 mM each (#R0241)</td>
<td>2.5 µL</td>
<td>0.2 mM of each dNTP</td>
</tr>
<tr>
<td>Forward primer, 10 µM</td>
<td>1.25 µL</td>
<td>0.5 µM*</td>
</tr>
<tr>
<td>Reverse primer, 10 µM</td>
<td>1.25 µL</td>
<td>0.5 µM*</td>
</tr>
<tr>
<td>Template DNA</td>
<td>0.125 µL</td>
<td>0.625 U</td>
</tr>
<tr>
<td>Water, nuclease-free (#R0581)</td>
<td>0.5 - 10 µL</td>
<td>25 µL</td>
</tr>
</tbody>
</table>

*Scale up or down the volume and concentration as appropriate.

3. Gently vortex the samples and spin down.

4. If using a thermal cycler that does not use a heated lid, overlay the reaction mixture with half volume of mineral oil.

5. Perform PCR using recommended thermal cycling conditions:

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature, °C</th>
<th>Time</th>
<th>Number of cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Denaturation</td>
<td>94</td>
<td>2 min</td>
<td>1</td>
</tr>
<tr>
<td>Denaturation</td>
<td>94</td>
<td>20 s</td>
<td></td>
</tr>
<tr>
<td>Annealing</td>
<td>50-65</td>
<td>30 s</td>
<td>30-40</td>
</tr>
<tr>
<td>Extension*</td>
<td>72</td>
<td>1 min</td>
<td></td>
</tr>
<tr>
<td>Final Extension</td>
<td>72</td>
<td>5 min</td>
<td>1</td>
</tr>
</tbody>
</table>

*Increase length of time in proportion to size of amplicon. ThermoPrime Taq DNA Polymerase extends at approximately 1000 np/min.

GUIDELINES FOR PREVENTING CONTAMINATION OF PCR REACTION

During PCR more than 10 million copies of template DNA are generated. Therefore, care must be taken to avoid contamination with other templates and amplicons that may be present in the laboratory environment. General recommendations to lower the risk of contamination are as follows:

- Prepare your DNA sample, set up the PCR mixture, perform thermal cycling and analyze PCR products in separate areas.
- Set up PCR mixtures in a laminar flow cabinet equipped with an UV lamp.
- Wear fresh gloves for DNA purification and reaction setup.
- Use reagent containers dedicated for PCR. Use positive displacement pipettes, or use pipette tips with aerosol filters to prepare DNA samples and perform PCR set up.
- Use PCR-certified reagents, including high quality water (e.g., Water, nuclease-free, (#R0581)).
- Always perform "no template control" (NTC) reactions to check for contamination.

GUIDELINES FOR PRIMER DESIGN

Use the Thermo Scientific REVieuer primer design software at www.thermoscientific.com/revieuer or follow general recommendations for PCR primer design as outlined below:

- PCR primers are generally 15-30 nucleotides long.
- Optimal GC content of the primer is 40-60%. Ideally, C and G nucleotides should be distributed uniformly along the primer.
- Avoid placing more than three G or C nucleotides at the 3' end to lower the risk of non-specific priming.
- If possible, the primer should terminate with a G or C at the 3'-end.
- Avoid self-complementary primer regions, complementarities between the primers and direct primer repeats to prevent hairpin formation and primer dimerization.
- Check for possible sites of undesired complementary between primers and template DNA.
- When designing degenerate primers, place at least 3 conserved nucleotides at the 3'-end.
- Differences in melting temperatures (Tm) between the two primers should not exceed 5°C.
Estimation of primer melting temperature

For primers containing less than 25 nucleotides, the approximate melting temperature (Tm) can be calculated using the following equation:

\[Tm = 4(G + C) + 2(A + T), \]

where G, C, A, T represent the number of respective nucleotides in the primer.

If the primer contains more than 25 nucleotides, specialized computer programs, e.g. REviewer™ (www.thermoscientific.com/reviewer), are recommended to account for interactions of adjacent bases, effect of salt concentration, etc.

COMPONENTS OF THE REACTION MIXTURE

Template DNA

Optimal amount of template DNA in the 25 µL reaction volume is 0.5-125 ng. Higher amount of template increases the risk of generation of non-specific PCR products. Lower amount of template reduces the accuracy of the amplification.

All routine DNA purification methods are suitable for template preparation e.g., Thermo Scientific GeneJET Genomic DNA Purification Kit (#K0721) or GeneJET™ Plasmid Miniprep Kit (#K0502). Trace amounts of certain agents used for DNA purification, such as phenol, EDTA and proteinase K, can inhibit DNA polymerases. Ethanol precipitation and repeated washes of the DNA pellet with 70% ethanol normally removes trace contaminants from DNA samples.

MgCl₂ concentration

Due to the binding of Mg²⁺ to dNTPs, primers and DNA templates, MgCl₂ concentration needs to be optimized for maximal PCR yield. The recommended concentration range is 1-4 mM. If the MgCl₂ concentration is too low, the yield of PCR product could be reduced. On the contrary, non-specific PCR products may appear and the PCR fidelity may be reduced if the MgCl₂ concentration is too high. If the DNA samples contain EDTA or other metal chelators, the MgCl₂ ion concentration in the PCR mixture should be increased accordingly (1 molecule of EDTA binds one Mg²⁺).

dNTPs

The recommended final concentration of each dNTP is 0.2 mM. In certain PCR applications, higher dNTP concentrations may be necessary. Due to the binding of Mg²⁺ to dNTPs, the MgCl₂ concentration needs to be adjusted accordingly. It is essential to have equal concentrations of all four nucleotides (dATP, dCTP, dGTP and dTTP) present in the reaction mixture.

To achieve 0.2 mM concentration of each dNTP in the PCR mixture, use the following volumes of dNTP mixes:

<table>
<thead>
<tr>
<th>Volume of PCR mixture</th>
<th>dNTP Mix, 2 mM each</th>
<th>dNTP Mix, 10 mM each</th>
<th>dNTP Mix, 25 mM each</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 µL</td>
<td>5 µL</td>
<td>1 µL</td>
<td>0.4 µL</td>
</tr>
<tr>
<td>25 µL</td>
<td>2.5 µL</td>
<td>0.5 µL</td>
<td>0.2 µL</td>
</tr>
<tr>
<td>20 µL</td>
<td>2 µL</td>
<td>0.4 µL</td>
<td>0.16 µL</td>
</tr>
</tbody>
</table>

Primers

The recommended concentration range of the PCR primers is 0.1-1 µM. Excessive primer concentrations increase the probability of mispriming and generation of non-specific PCR products.

For degenerate primers higher primer concentrations in the range of 0.3-1 µM are often favorable.

CYCLING PARAMETERS

Initial DNA denaturation

It is essential to completely denature the template DNA at the beginning of PCR to ensure efficient utilization of the template during the first amplification cycle. If the GC content of the template is 50% or less, an initial 1-3 min denaturation at 94°C is sufficient.

Denaturation

A DNA denaturation time of 20 seconds per cycle at 94°C is normally sufficient. For GC-rich DNA templates, this step can be prolonged to 3-4 min.

Primer annealing

The annealing temperature should be 5°C lower than the melting temperature (Tm) of the primers. Annealing for 30 seconds is normally sufficient. If non-specific PCR products appear, the annealing temperature should be optimized stepwise in 1-2°C increments. When additives which change the melting temperature of the primer-template complex are used (glycerol, DMSO, formamide and betaine), the annealing temperature must also be adjusted.

Extension

The optimal extension temperature for ThermoPrime Taq DNA Polymerase is 70-75°C. The recommended extension step is 1 min/kb at 72°C.

Number of cycles

The number of cycles may vary depending on the amount of template DNA in the PCR mixture and the expected PCR product yield. If less than 10 copies of the template are present in the reaction, about 40 cycles are required. For higher template amounts, 30-35 cycles are sufficient.

Final extension

After the last cycle, it is recommended to incubate the PCR mixture at 72°C for additional 5-15 min to fill in any possible incomplete reaction products. If the PCR product will be cloned into TA vectors (for instance, using Thermo Scientific InstAclone PCR Cloning Kit (#K1213)), the final extension step may be prolonged to 30 min to ensure the highest efficiency of 3′-dATL tailing of PCR product. If the PCR product will be used for cloning using Thermo Scientific CloneJET PCR Cloning Kit (#K1231), the final extension step can be omitted.

REFERENCES

CERTIFICATE OF ANALYSIS

Deoxyribonuclease Assay

No conversion of covalently closed circular DNA to nicked DNA was detected after incubation of 10 U of ThermoPrime Taq DNA Polymerase with 1 µg of pUC19 DNA for 4 hours at 37°C.

Labeled Oligonucleotide (LO) Assay

No detectable degradation of single-stranded and double-stranded 5′-[32P]-labeled oligonucleotides was observed after incubation with 10 U of ThermoPrime Taq DNA Polymerase at 37°C for 4 hours.

Ribonuclease Assay

No contaminating RNase activity was detected after incubation of 10 U of ThermoPrime Taq DNA Polymerase with 1 µg of [γ-32P]-RNA for 4 hours at 37°C.

Functional Assay

ThermoPrime Taq DNA Polymerase was tested for amplification of 956 bp single copy gene from human genomic DNA and for amplification of cDNA.

Quality authorized by: Jurgita Zilinskiene

NOTICE TO PURCHASER:

Use of this product is covered by US Patent No. 6,127,155. The purchase of this product includes a limited, non-transferable immunity from suit under the foregoing patent claims for using only this amount of product for the purchaser’s own internal research. No right under any other patent claim, no right to perform any patented method and no right to perform commercial services of any kind, including without limitation reporting the results of purchaser’s activities for a fee or other commercial consideration, is conveyed expressly, by implication, or by estoppel. This product is for research use only. Diagnostic uses under Roche patents require a separate license from Roche. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.

PRODUCT USE LIMITATION

This product is developed, designed and sold exclusively for research purposes and in vitro use only. The product was not tested for use in diagnostics or for drug development, nor is it suitable for administration to humans or animals. Please refer to www.thermoscientific.com/onebio for Material Safety Data Sheet of the product.

© 2012 Thermo Fisher Scientific, Inc. All rights reserved. TWEEN is a registered trademark of ICI America, Inc. Nonidet is a trademark of Shell. All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries.