

Thermo

Protein Deconvolution

Version 1.0

User Guide

XCALI-97400 Revision A

October 2011

© 2011 Thermo Fisher Scientific Inc. All rights reserved.

ReSpect is a trademark of Positive Probability Ltd.

Xcalibur is a registered trademark of Thermo Fisher Scientific Inc. in the United States.

Microsoft, Excel, PowerPoint, Visual C++, and Windows are registered trademarks of Microsoft Corporation in the United States and other countries. Adobe and Acrobat are registered trademarks of Adobe Systems Inc. in the United States and other countries.

All other trademarks are the property of Thermo Fisher Scientific Inc. and its subsidiaries.

Thermo Fisher Scientific Inc. provides this document to its customers with a product purchase to use in the product operation. This document is copyright protected and any reproduction of the whole or any part of this document is strictly prohibited, except with the written authorization of Thermo Fisher Scientific Inc.

The contents of this document are subject to change without notice. All technical information in this document is for reference purposes only. System configurations and specifications in this document supersede all previous information received by the purchaser.

Thermo Fisher Scientific Inc. makes no representations that this document is complete, accurate or errorfree and assumes no responsibility and will not be liable for any errors, omissions, damage or loss that might result from any use of this document, even if the information in the document is followed properly.

This document is not part of any sales contract between Thermo Fisher Scientific Inc. and a purchaser. This document shall in no way govern or modify any Terms and Conditions of Sale, which Terms and Conditions of Sale shall govern all conflicting information between the two documents.

Release history: Revision A, October 2011

Software version: Thermo Protein Deconvolution 1.0.0 and later, Thermo Foundation 1.0.2 and later, Microsoft Windows 7

For Research Use Only. Not for use in diagnostic procedures.

Contents

	Preface	v
	Related Documentation	. v
	System Requirements	.vi
	Activating a Protein Deconvolution License	.vi
	Safety and Special Notices	
	Contacting Us	viii
Chapter 1	Introduction	1
-	Features	. 1
	Xtract Algorithm	. 2
	ReSpect Algorithm	. 2
	Workflow	. 3
	Inputs and Outputs	. 5
	Inputs	. 5
	Outputs	. 5
	Starting the Protein Deconvolution Application	. 5
	Specifying the Default RAW File Directory	. 6
	Exiting the Protein Deconvolution Application	. 7
Chapter 2	Deconvolving Isotopically Resolved Mass Spectra with the Xtract	
	Algorithm9	
	Setting Up an Xtract Protein Deconvolution	. 9
	Method Selection Page Parameters	11
	Creating an Xtract Parameter Set	12
	Parameters Page Parameters for the Xtract Algorithm	18
	Selecting the Spectrum to Deconvolve	21
	Chromatogram Page Parameters	27
	Chromatogram Pane Shortcut Menu	29
	Chromatogram Pane Header	30
	Source Spectrum Pane Shortcut Menu	30
	Source Spectrum Pane Header	30
	Deconvolving the Spectrum	31
	Process and Review Page Parameters for the Xtract Algorithm	38

iv

	Displaying a Deconvolution Report	40
	Reporting Page Toolbar	
	Sample Information Section	
	Chromatogram Parameters Section	44
	Source Chromatogram Section	44
	Source Spectrum Section	
	Main Parameters (Xtract) Section	46
	Advanced Parameters (Xtract) Section	46
	Deconvolved Spectrum Section	47
	Xtract Masses Table Section	47
	Source Spectrum Evidence Section	48
	Loading Saved Results	50
Chapter 3	Deconvolving Isotopically Unresolved Mass Spectra with the ReSpect	
-	Algorithm51	
	Setting Up a ReSpect Protein Deconvolution	51
	Method Selection Page Parameters	53
	Creating a ReSpect Parameter Set	54
	Parameters Page Parameters for the ReSpect Algorithm	
	Selecting the Spectrum to Deconvolve	
	Obtaining the Best Results with the ReSpect Algorithm	
	Chromatogram Page Parameters	
	Chromatogram Pane Shortcut Menu	
	Chromatogram Pane Header	
	Source Spectrum Pane Shortcut Menu	
	Source Spectrum Pane Header	
	Deconvolving the Spectrum	
	Process and Review Page Parameters for the ReSpect Algorithm	
	Displaying a Deconvolution Report	
	Reporting Page Toolbar	
	Sample Information Section	
	Chromatogram Parameters Section	
	6	
	Source Spectrum Section	
	Advanced Parameters (ReSpect) Section	
	Deconvolved Spectrum Section	
	ReSpect Masses Table Section	
	Source Spectrum Evidence Section	
	Loading Saved Results	
	Index	95

Preface

This guide describes how to use the Thermo Protein Deconvolution application to deconvolve mass spectra.

Contents

- Related Documentation
- System Requirements
- Activating a Protein Deconvolution License
- Safety and Special Notices
- Contacting Us

Related Documentation

The Protein Deconvolution application includes Help and these manuals as PDF files:

- Protein Deconvolution User Guide
- Protein Deconvolution Quick Start Guide

❖ To view product manuals

- Go to Start > All Programs > Thermo Protein Deconvolution > Manuals.
- From the Protein Deconvolution window, choose **Help > Manuals**.

To open Help

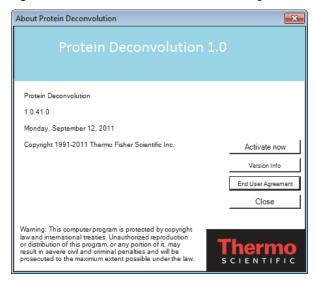
- From the Protein Deconvolution window, choose **Help > Protein Deconvolution Help**.
- If available for a specific window or dialog box, click **Help** or press F1 for information about setting parameters.

System Requirements

The Protein Deconvolution application requires a license. In addition, your system must meet these minimum requirements.

System	Requirements
Hardware	 2 GHz processor with 1 GB RAM CD-ROM drive Video card and monitor capable of 1280 × 1024 resolution (XGA) 75 GB available on the C: drive NTFS format
Software	 Microsoft[™] Windows[™] 7 Microsoft .NET Framework 4 Microsoft Visual C++[™] 2010 Redistributable package (x86) (Optional) Thermo Xcalibur[™] 2.2 SP1

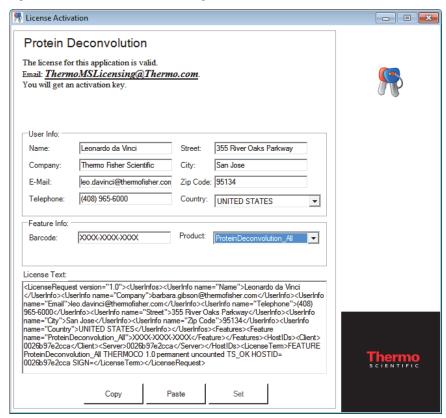
Activating a Protein Deconvolution License


You must activate a Protein Deconvolution license before you can use the application to deconvolve a spectrum.

❖ To activate a Protein Deconvolution license

 Choose Help > About Protein Deconvolution in the upper right corner of the Protein Deconvolution window.

The About Protein Deconvolution dialog box opens, as shown in Figure 1.


Figure 1. About Protein Deconvolution dialog box

2. Click Activate Now.

The License Activation dialog box opens, as shown in Figure 2.

Figure 2. License Activation dialog box

- 3. Complete all the boxes in the User Info area.
- 4. In the Barcode box, type the bar code, which you can find on the DVD.
- 5. In the Product list, select **ProteinDeconvolution_All**.

After you complete the information in the User Info and Feature Info areas, code similar to that shown in Figure 2 appears in the License Text box.

Note Check to be sure there are no spaces in the License Text code.

6. Select the text in the License Text box, click **Copy**, paste the copied text into an e-mail, and send it to ThermoMSLicensing@Thermo.com.

You will receive a license e-mail within two business days.

7. When you receive your license e-mail, copy the text from the body of the e-mail, place the cursor in the License Text box of the License Activation dialog box, and click **Paste**.

The Set button now becomes available.

8. Click Set.

Safety and Special Notices

Make sure you follow the precautionary statements presented in this guide. The safety and other special notices appear in boxes.

Safety and special notices include the following:

CAUTION Highlights hazards to humans, property, or the environment. Each CAUTION notice is accompanied by an appropriate CAUTION symbol.

IMPORTANT Highlights information necessary to prevent damage to software, loss of data, or invalid test results; or might contain information that is critical for optimal performance of the system.

Note Highlights information of general interest.

Tip Highlights helpful information that can make a task easier.

Contacting Us

There are several ways to contact Thermo Fisher Scientific for the information you need.

To contact Technical Support

Phone 800-532-4752 Fax 561-688-8736

E-mail us.techsupport.analyze@thermofisher.com

Knowledge base www.thermokb.com

Find software updates and utilities to download at mssupport.thermo.com.

To contact Customer Service for ordering information

Phone 800-532-4752 Fax 561-688-8731

E-mail us.customer-support.analyze@thermofisher.com

Web site www.thermo.com/ms

To get local contact information for sales or service

Go to www.thermoscientific.com/wps/portal/ts/contactus.

❖ To copy manuals from the Internet

Go to mssupport.thermo.com, agree to the Terms and Conditions, and then click **Customer Manuals** in the left margin of the window.

❖ To suggest changes to documentation or to Help

- Fill out a reader survey online at www.surveymonkey.com/s/PQM6P62.
- Send an e-mail message to the Technical Publications Editor at techpubs-lcms@thermofisher.com.

Introduction

This chapter describes the purpose, features, workflows, inputs, and outputs of the Protein Deconvolution application. It also explains how to start and exit the application, activate a Protein Deconvolution license, and specify a default RAW file directory.

Contents

- Features
- Workflow
- Inputs and Outputs
- Starting the Protein Deconvolution Application
- Specifying the Default RAW File Directory
- Exiting the Protein Deconvolution Application

Features

Electrospray ionization (ESI) of intact peptides and proteins produces mass spectra that contain series of multiply charged ions with associated mass-to-charge (m/z) ratios. The resulting spectrum is complex and difficult to interpret, requiring mathematical algorithms for the analysis of the data. Through a process called deconvolution, the Protein Deconvolution application uses such algorithms to transform a charge state series into a molecular mass. The application identifies multiple peaks in the mass spectrum associated with different charge states of the same component and displays information about the masses and abundance of that component. For example, peaks at 1000 m/z, 1111 m/z, and 1250 m/z might be the charge states 10, 9, and 8 for a protein with a mass of 10 000 Da.

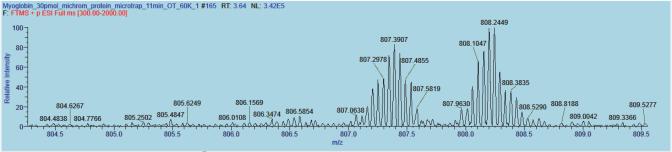
The Protein Deconvolution application includes two independent deconvolution algorithms for mass spectral data:

- Xtract, which deconvolves isotopically resolved mass spectra, that is, spectra in which it is
 possible to distinguish separate peaks for different isotopic compositions of the same
 component
- ReSpect[™], which deconvolves isotopically unresolved (or unseparated) mass spectra, that is, spectra in which it is not possible to distinguish the separate peaks for different isotopic compositions of the same component

1 Introduction Features

Whether mass spectra are isotopically resolved or unresolved depends not on the specific instrument model but on the resolution of the instrument, the mass of the compounds involved, and the details of the experiment run.

You can produce more than one deconvolved spectrum for any given mass spectrum.


Xtract Algorithm

The Xtract algorithm deconvolves isotopically resolved mass spectra of peptides and proteins. It simultaneously combines all observed charge states into a single isotopic cluster with charge state 1 or zero (uncharged). The Xtract algorithm always deisotopes the isotopic patterns, and the resulting deconvolved spectrum only shows the monoisotopic mass.

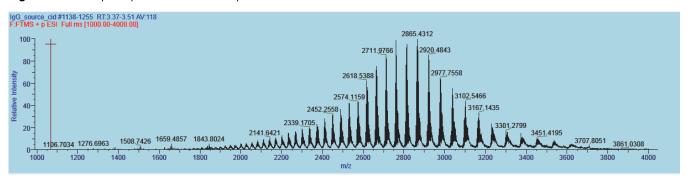
When used properly, the Xtract algorithm reduces spectral noise and provides a high-intensity mass spectrum of monoisotopic peaks. You can use the results table, called the monoisotopic mass list, of the deconvolved mass-spectral peaks or the extracted spectra (not the original MS/MS spectra) as the input to various search engines.

Figure 3 shows an isotopically resolved mass spectrum.

Figure 3. Isotopically resolved mass spectrum

ReSpect Algorithm

The ReSpect algorithm from Positive Probability, Ltd. (PPL) is a robust and efficient data-fitting method that deconvolves isotopically unresolved complex mass spectra from biomolecules, such as small and large proteins, to the neutral average mass of each molecule. It determines the mass-to-charge ratio (m/z) of every peak in an ESI mass spectrum and evaluates all possible charge states for any particular peak as determined by the mass ranges. Given a theoretical model, it returns the least-squares best fit to the data by adjusting the model parameters. It fits the data only within the data's errors or noise level to avoid overfitting. For realistic solutions, the ReSpect algorithm constrains the parameters to be non-negative. It also provides artifact-free charge deconvolution and deisotoping analysis.


For analyzing spectra, the ReSpect algorithm includes an optional spectrum preconditioning method, including automated baseline subtraction, and a number of automated and semiautomated peak-modeling facilities.

The ReSpect algorithm first performs a baseline subtraction. Next it performs a peak deconvolution to produce a list of peaks, and then it filters these peaks. Lastly, it performs a charge deconvolution to convert the remaining peaks from a mass-to-charge spectrum to a mass spectrum. The ReSpect algorithm uses spacing patterns, which are indicative of mass, to determine what the average mass should be.

The ReSpect algorithm can accommodate both low-charge-state spectra and data with a low signal-to-noise ratio, so it does not require high-quality data to produce meaningful results. You can use it to confirm molecular masses of peptides.

Figure 4 shows an isotopically unresolved mass spectrum.

Figure 4. Isotopically unresolved mass spectrum

Workflow

Figure 5 shows the workflow to follow to deconvolve mass spectra with the Protein Deconvolution application. The workflow is nearly the same for the Xtract algorithm as it is for the ReSpect algorithm.

You can select the chromatogram to deconvolve either in the Protein Deconvolution application or in the Qual Browser utility, which is part of the Xcalibur data system. When transferring data—for example, in an e-mail—to submit to the Protein Deconvolution application, you might want to reduce the amount of data to transfer by using Qual Browser to select a single spectrum. For instructions on using Qual Browser to select a chromatogram, refer to the *Thermo Xcalibur Qualitative Analysis User Guide*.

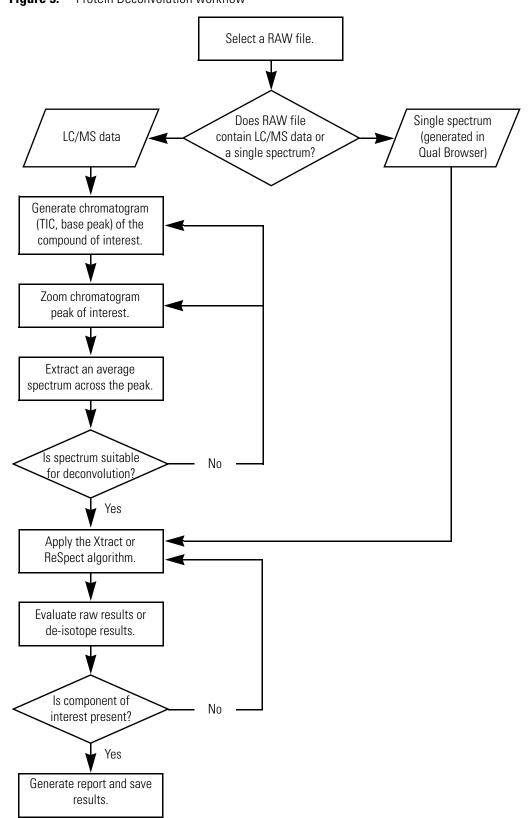


Figure 5. Protein Deconvolution workflow

Inputs and Outputs

The Protein Deconvolution application can accept the following input and generate the following output.

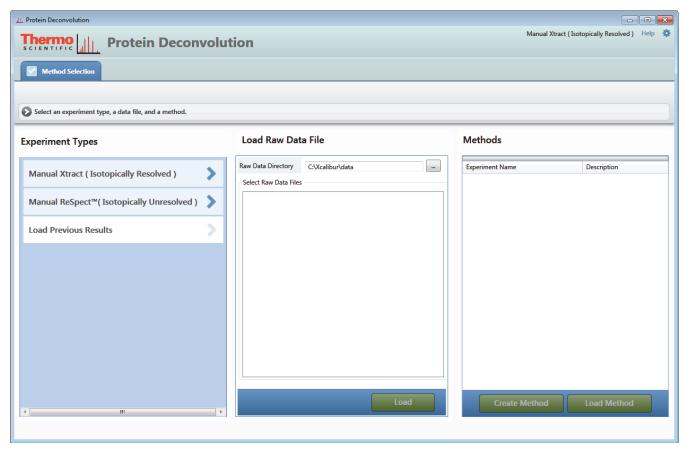
Inputs

The input file to the Protein Deconvolution application is the RAW file from a mass spectrometry experiment. The RAW file can contain LC/MS data or a single spectrum.

You can use the Protein Deconvolution application with the data from Exactive $^{\text{\tiny M}}$, Orbitrap $^{\text{\tiny M}}$, and FTMS mass spectrometers.

You cannot use the Protein Deconvolution application with LCQ, LTQ, TSQ, or Velos data.

Outputs

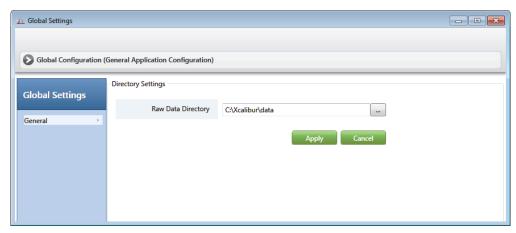

As output, the Protein Deconvolution application produces a deconvolved spectrum and peak information that you can view on the Reporting page of the Protein Deconvolution window. You can save this report to a PDF file.

Starting the Protein Deconvolution Application

- **❖** To start the Protein Deconvolution application
- Choose Start > All Programs > Thermo Protein Deconvolution or click the Protein Deconvolution icon,

The Protein Deconvolution window appears, as shown in Figure 6.

Figure 6. Method Selection page of the Protein Deconvolution window

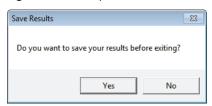

Specifying the Default RAW File Directory

You can specify the default directory where you want to store your RAW files.

- ❖ To specify the default directory for your RAW files
- 1. Click the **Global Settings** icon, in the upper right corner of the Protein Deconvolution window, to activate the Global Settings dialog box, shown in Figure 7.

7

Figure 7. Global Settings dialog box



- 2. In the Raw Data Directory box, click the browse button (...) to browse to the appropriate directory.
- 3. Click Apply.

Exiting the Protein Deconvolution Application

- **❖** To exit the Protein Deconvolution application
- 1. Click the **Close** button, **X**, in the upper right corner of the Protein Deconvolution window.
- 2. If you have clicked the Process button to produce deconvolution results and have not saved them, the following prompt box appears:

Figure 8. Prompt to save results before exiting

3. Click Yes or No.

Deconvolving Isotopically Resolved Mass Spectra with the Xtract Algorithm

This chapter explains how to deconvolve isotopically resolved mass spectra with the Xtract algorithm.

Contents

- Setting Up an Xtract Protein Deconvolution
- Creating an Xtract Parameter Set
- Selecting the Spectrum to Deconvolve
- Deconvolving the Spectrum
- Displaying a Deconvolution Report
- Loading Saved Results

When you generate a deconvolved spectrum from an isotopically resolved protein mass spectrum, the source MS spectrum can be a single spectrum from an LC/MS data file, an averaged spectrum from an LC/MS data file, or a single spectrum from a RAW file containing only that spectrum. The Xtract algorithm transforms this source spectrum into a mass spectrum and displays it in a new pane labeled with mass units rather than with the mass-to-charge ratio (m/z) on the x axis. For information on the Xtract algorithm, see "Xtract Algorithm" on page 2.

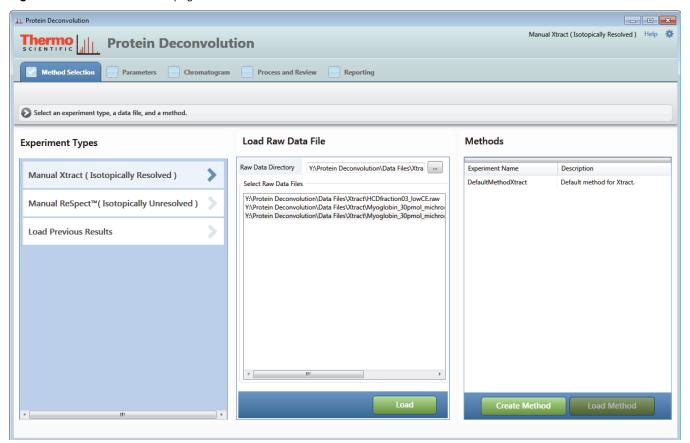
Setting Up an Xtract Protein Deconvolution

First select the Xtract deconvolution algorithm, a RAW file, and a parameter set.

- To set up a protein deconvolution with the Xtract algorithm
- 1. Click the **Method Selection** tab if it is not already selected.

The Method Selection page contains three panes:

• Experiment Types pane: Displays the available deconvolution algorithms and a command that you can use to load the saved results of previous deconvolutions.


2 Deconvolving Isotopically Resolved Mass Spectra with the Xtract Algorithm

Setting Up an Xtract Protein Deconvolution

- Load Raw Data File pane: Displays the list of the available RAW files for the selected algorithm.
- Methods pane: Displays the available parameter sets.
- 2. In the Experiment Types pane, click Manual Xtract (Isotopically Resolved).
- 3. In the Load Raw Data File pane, select the RAW data file that contains the spectral data for your sample:
 - a. In the Directory box, type the path of the RAW file or click the Browse button (...) to browse to the directory containing the file.
 - b. In the Select Raw Data Files box, click the name of the RAW file.
 - c. Click Load.

Several more tabs appear along the top of the Protein Deconvolution window, and the available parameter sets appear in the Methods pane, as shown in Figure 9.

Figure 9. Method Selection page after the RAW file is loaded for Xtract deconvolution

- 4. Specify the extraction parameter set to use by doing one of the following in the Methods pane:
 - If one of the existing parameter sets contains the appropriate parameters, select the name of the parameter set of interest and click **Load Method**. The Protein Deconvolution application automatically transfers you to the Chromatogram page if there is a chromatogram and to the Process and Review page if there is a single spectrum. To use the Chromatogram page, follow the instructions in "Selecting the Spectrum to Deconvolve" on page 21. To use the Process and Review page, follow the instructions in "Deconvolving the Spectrum" on page 31.
 - If the existing parameter sets do not contain the appropriate extraction parameters or if there are no existing parameter sets, click **Create Method** to create a new parameter set. The Protein Deconvolution application automatically transfers you to the Parameters page. Follow the instructions in "Creating an Xtract Parameter Set" on page 12.

Method Selection Page Parameters

The Method Selection page consists of the Experiment Types, Load Raw Data File, and Methods panes. The parameters in these panes are the same for Xtract and ReSpect deconvolutions.

Experiment Types Pane Parameters

Table 1 lists the parameters in the Experiment Types pane of the Method Selection page.

Table 1. Experiment Types pane parameters

Parameter	Description
Manual Xtract (Isotopically Resolved)	Deconvolves an isotopically resolved mass spectrum with the Xtract algorithm.
Manual ReSpect (Isotopically Unresolved)	Deconvolves an isotopically unresolved mass spectrum with the ReSpect algorithm.
Load Previous Results	Loads the saved results of a previous deconvolution.

Load Raw Data File Pane Parameters

Table 2 lists the parameters in the Load Raw Data File pane of the Method Selection page.

Table 2. Load Raw Data File pane parameters

Parameter	Description
Raw Data Directory	Specifies the directory where the RAW file containing the spectrum to deconvolve is located.
Select Raw Data Files	Specifies the name of the RAW file containing the spectrum to deconvolve.
Load	Loads the specified RAW file.

Methods Pane Parameters

Table 3 lists the parameters in the Methods pane of the Method Selection page.

Table 3. Methods pane parameters

Parameter	Description
Experiment Name	Specifies the name of the parameter set to use in the deconvolution.
Description	Briefly describes the parameter set to use in the deconvolution.
Create Method	Activates the Parameters page so that you can specify the parameters for a new parameter set.
Load Method	Loads the specified existing parameter set.

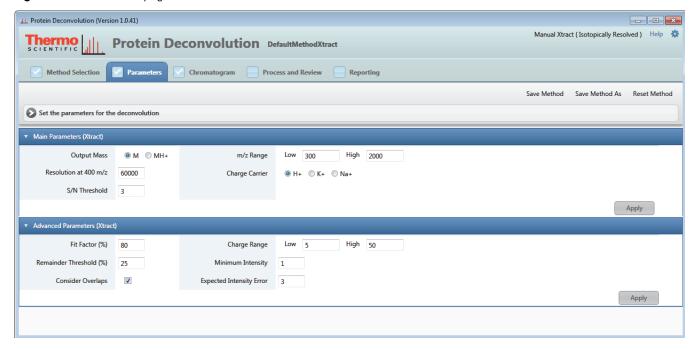
Creating an Xtract Parameter Set

When you click Create Method in the Methods pane of the Method Selection page, the Protein Deconvolution application automatically transfers you to the Parameters page.

The Parameters page features two panes containing parameters that control the deconvolution:

- Main Parameters (Xtract): Displays basic parameters that might change often. These parameters also appear on the Process and Review page.
- Advanced Parameters (Xtract): Displays parameters that only infrequently need changing. Only experienced users should change these parameters.

For detailed descriptions of these parameters, see Table 4 on page 18.


13

❖ To create an Xtract parameter set

1. Click the **Parameters** tab if it is not already selected.

The default settings for the Xtract algorithm automatically populate the parameter boxes on the Parameters page, as shown in Figure 10.

Figure 10. Parameters page for Xtract deconvolution

Note The Xtract default parameter settings provide a good balance between sensitivity and report size by detecting all of the significant components while excluding low-intensity noise peaks that might inflate the final report to an excessive length.

- 2. (Optional) Change the appropriate parameters in the Main Parameters (Xtract) pane:
 - Output Mass: Determines whether the Xtract algorithm returns a single peak at either the monoisotopic mass or the monoisotopic MH+ mass.
 - (Default) M: Specifies that the results file contains a single peak for the monoisotopic mass. This option generates masses without adducts.
 - MH+: Specifies that the results file contains a monoisotopic MH+ mass. This
 option generates masses with adducts.

14

• Resolution at 400 m/z: Defines the resolution of the source spectrum at an m/z value of 400. This parameter is not needed if the Xtract algorithm deconvolves FTMS, Orbitrap, or Exactive data, because the data contains the information in the spectrum. You must set this parameter for all other spectrum types. The default is not a fixed number but varies from RAW file to RAW file. In cases where the mass spectrometer measured the resolution in the RAW file at an m/z value other than 400, the Xtract algorithm scales it as follows to account for the variation in instrument resolution versus m/z:

$$R_{converted} = R_{measured} \times \sqrt{\frac{M_{measured}}{400}}$$

where:

- R_{converted} is the resolution to be converted.
- $R_{measured}$ is the measured mass-to-charge ratio (m/z).
- M_{measured} is the measured mass-to-charge ratio (m/z) other than 400.
- S/N Threshold: Specifies a signal-to-noise (S/N) threshold, *x*, above which the Xtract algorithm considers a measured peak to be a real (accepted) peak. The Xtract algorithm ignores peaks below this threshold.

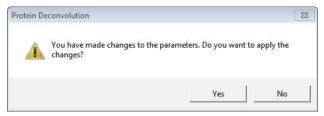
Any spectral peak must be *x* times the intensity of the calculated noise for that spectrum before the Xtract algorithm considers it.

The minimum value is 1, and there is no maximum.

The default is 3.

- m/z Range: Specifies the portion of the input spectrum that the Xtract algorithm processes.
 - Low: Specifies the lowest end of the input spectrum.
 - High: Specifies the highest end of the input spectrum.

For example, if the total mass range of the spectrum is mass 100 to 2000, a setting of 300 to 500 for the m/z Range parameter means that the Xtract algorithm processes only peaks with masses between 300 and 500 *m/z*.


The default is the complete mass range of the processed spectrum. This number is not a fixed number but varies from RAW file to RAW file.

- Charge Carrier: Specifies the adduct ions used during ESI processing. Adduct ions bring the charge to the molecule, and this charge converts it to an ion.
 - (Default) H+: Specifies that the adduct is hydrogen.
 - K+: Specifies that the adduct is potassium.
 - Na+: Specifies that the adduct is sodium.

3. If you want to return the parameters in the Main Parameters (Xtract) pane to their original default settings, click **Reset Method**; otherwise, click **Apply**.

If you make changes to the parameters on this pane but do not apply them and then click another tab, the message box shown in Figure 11 appears. Click **Yes** to apply the parameter changes or **No** to restore the parameter defaults.

Figure 11. Reminder to apply parameters

- 4. (Optional) If you are an experienced user, change the appropriate parameters in the Advanced Parameters (Xtract) pane:
 - Fit Factor (%): Measures the quality of the match between a measured isotope pattern and an averagine distribution of the same mass, as a percentage. Enter a value between 0 and 100%.
 - 0% requires a low fit only.
 - 100% means that the measured isotope profile is identical to the theoretical averagine isotope distribution.

The default is 80%.

Remainder Threshold (%): Specifies the height of the smaller overlapping isotopic cluster, as a percentage, with respect to the height of the most abundant isotopic cluster when the Xtract algorithm attempts to resolve overlapping isotopic clusters. For example, if one isotopic cluster in a spectrum has an abundance of 100 and you set the Remainder Threshold parameter to 30%, the Xtract algorithm ignores any overlapping clusters with an abundance less than 30.

The Remainder Threshold parameter is a percentage value that lies between 0 and 100%.

The default is 25%.

- Consider Overlaps: Determines whether the Xtract algorithm is more tolerant of
 errors when the spectrum intensity is significantly higher than expected for the
 theoretical isotopic cluster.
 - (Default) Selected: The Xtract algorithm is more tolerant of errors when the spectrum intensity is significantly higher than expected for the theoretical isotopic cluster. Because this option can lead to increased false positives, select it only in cases where you expect overlapping isotopic clusters in a data set.
 - Unselected: The Xtract algorithm is less tolerant of errors when the spectrum intensity is significantly higher than expected for the theoretical isotopic cluster.

16

- Charge Range: Specifies the lowest and highest charge state to be deconvolved.
 - Low: Specifies the lowest charge state.
 - High: Specifies the highest charge state.

For example, if you set this parameter range from 1 through 5, the Xtract algorithm considers only charge states 1 through 5 for deconvolution. It ignores charges 6 and higher.

The default range is 5 through 50.

• Minimum Intensity: Specifies a minimum intensity threshold to filter out possible background noise, even when you set the S/N Threshold parameter to zero.

The minimum value is 0, and there is no maximum. The default value is 1.

• Expected Intensity Error: Specifies the permissible percentage of error allowed in calculating the ratio of the most abundant isotope to the next isotope higher in mass in the isotope series.

The default is 3%.

5. If you want to return the parameters in the Advanced Parameters (Xtract) pane to their original default settings, click **Reset Method**; otherwise, click **Apply**.

If you change any parameters in this pane but do not click Apply and then click another tab, the message box shown in Figure 11 on page 15 appears. Click **Yes** to apply the parameter changes or **No** to restore the parameter defaults.

6. Click **Save Method** or **Save Method As** to save the parameter set and give it a name.

The Save Method command saves current parameter values to the existing method, overwriting any previous values. The Save Method As command saves parameter values to a new method.

- 7. In the Save or SaveAs dialog box, do the following:
 - a. In the Method Name box, type a name for the parameter set.
 - b. In the Description box, briefly describe the parameter set. For example, you might want to describe the sample and the proteins analyzed.

Figure 12 shows a completed dialog box.



Figure 12. Completed SaveAs dialog box

c. Click Save.

Note The Protein Deconvolution application automatically saves all parameter sets that you create to the database in

C:\ProgramData\Thermo\ProteinDeconvolution\methods.sqlite. You cannot save individual method files to a directory that you choose.

The next time that you access the Method Selection page and click Manual Xtract (Isotopically Resolved), you will see the name of the parameter set that you saved in the Methods pane.

Note You cannot delete existing parameter sets from the Methods pane except by deleting the entire file from the C:\ProgramData\Thermo\ProteinDeconvolution\methods.sqlite database.

The application transfers you to the Chromatogram page so that you can select the spectrum to deconvolve. For information on this process, see "Selecting the Spectrum to Deconvolve" on page 21.

Parameters Page Parameters for the Xtract Algorithm

Table 4 describes the parameters on the Parameters page for an Xtract deconvolution.

Table 4. Parameters page parameters for Xtract deconvolution (Sheet 1 of 4)

Parameter	Description
Main Parameters (Xtract) pane	Displays basic parameters that might change often. These parameters also appear on the Process and Review page.
Output Mass	Determines whether the Xtract algorithm returns a single peak at either the monoisotopic mass or the monoisotopic MH+ mass.
	 (Default) M: Specifies that the results file contains a single peak for the monoisotopic mass. This option generates masses without adducts.
	 MH+: Specifies that the results file contains a monoisotopic MH+ mass. This option generates masses with adducts.
Resolution at 400 m/z	Defines the resolution of the source spectrum at an m/z value of 400. This parameter is not needed if the Xtract algorithm extracts FTMS, Orbitrap, or Exactive data, because the data contains the information in the spectrum. You must set this parameter for all other spectrum types. In cases where the mass spectrometer measured the resolution in the RAW file at an m/z value of other than 400, the Xtract algorithm scales it as follows to account for the variation in instrument resolution versus m/z :
	$R_{converted} = R_{measured} \times \sqrt{\frac{M_{measured}}{400}}$
	where:
	\bullet R _{converted} is the resolution to be converted.
	• $R_{measured}$ is the measured mass-to-charge ratio (m/z) .
	• $M_{measured}$ is the measured mass-to-charge ratio (m/z) other than 400.
	The default is not a fixed number but varies from RAW file to RAW file.

Table 4. Parameters page parameters for Xtract deconvolution (Sheet 2 of 4)

Parameter	Description
S/N Threshold	Specifies a signal-to-noise (S/N) threshold, x, above which the Xtract algorithm considers a measured peak to be a real (accepted) peak. The Xtract algorithm ignores peaks below this threshold.
	Any spectral peak must be <i>x</i> times the intensity of the calculated noise for that spectrum before the Xtract algorithm considers it.
	Range: 1 to No maximum. Recommended value is 2 to <i>n</i> .
	Default: 3
m/z Range	Specifies the portion of the input spectrum that the Xtract algorithm processes.
	• Low: Specifies the lowest end of the input spectrum.
	• High: Specifies the highest end of the input spectrum.
	For example, if the total mass range of the spectrum is mass 100 to 2000, a setting of 300 to 500 for the m/z Range parameter means that the Xtract algorithm processes only peaks with masses between 300 and 500 <i>m/z</i> .
	The default is the complete mass range of the processed spectrum. This number is not a fixed number but varies from RAW file to RAW file.
Charge Carrier	Specifies the adduct ions used during ESI processing. Adduct ions bring the charge to the molecule, and this charge converts it to an ion.
	• (Default) H+: Specifies that the adduct was hydrogen.
	• K+: Specifies that the adduct was potassium.
	• Na+: Specifies that the adduct was sodium.
Apply	Implements the parameter settings that you selected. This button is only available if you have changed any parameter settings in the Main Parameters (Xtract) pane.

Table 4. Parameters page parameters for Xtract deconvolution (Sheet 3 of 4)

Parameter	Description
Advanced Parameters (Xtract) pane	Displays parameters that only infrequently need changing. Only experienced users should change these parameters.
Fit Factor (%)	Measures the quality of the match between a measured isotope pattern and an averagine distribution of the same mass. Enter a value between 0 and 100%.
	• 0% requires a low fit only.
	• 100% means that the measured isotope profile is identical to the theoretical averagine isotope distribution.
	Default: 80%
Remainder Threshold (%)	Specifies the height of the smaller overlapping isotopic cluster, as a percentage, with respect to the height of the most abundant isotopic cluster when the Xtract algorithm attempts to resolve overlapping isotopic clusters. For example, if one isotopic cluster in a spectrum has an abundance of 100 and you set the Remainder Threshold parameter to 30%, the Xtract algorithm ignores any overlapping clusters with an abundance less than 30.
	Range: 0–100%
	Default: 25%
Consider Overlaps	Determines whether the Xtract algorithm is more tolerant of errors when the spectrum intensity is significantly higher than expected for the theoretical isotopic cluster.
	• (Default) Selected: The Xtract algorithm is more tolerant of errors when the spectrum intensity is significantly higher than expected for the theoretical isotopic cluster. Because this option can lead to increased false positives, select it only in cases where you expect overlapping isotopic clusters in a data set.
	 Unselected: The Xtract algorithm is less tolerant of errors when the spectrum intensity is significantly higher than expected for the theoretical isotopic cluster.

Table 4. Parameters page parameters for Xtract deconvolution (Sheet 4 of 4)

Parameter	Description
Charge Range	Specifies the lowest and highest charge state to be deconvolved.
	• Low: Specifies the lowest charge state.
	• High: Specifies the highest charge state.
	Default range: 5 through 50
	As an example, if you set this parameter range from 1 through 5, the Xtract algorithm considers only charge states 1 through 5 for deconvolution. It ignores charges 6 and higher.
Minimum Intensity	Specifies a minimum intensity threshold to filter out possible background noise, even when you set the S/N Threshold parameter to zero.
	Range: 0 to No maximum
	Default: 1
Expected Intensity Error	Specifies the permissible percentage of error allowed in calculating the ratio of the most abundant isotope to the next isotope higher in mass in the isotope series.
	Default: 3%
Apply	Implements the parameter settings that you selected. This button is only available if you have changed any parameter settings in the Advanced Parameters (Xtract) pane.

Selecting the Spectrum to Deconvolve

When you click Save Method or Save Method As after you have set the parameters on the Parameters page or when you load an existing parameter set and click Load Method in the Method Selection page, the Protein Deconvolution application automatically transfers you to the Chromatogram page. Use the Chromatogram page to select the best possible spectrum for the target protein for deconvolution.

To select the spectrum to deconvolve

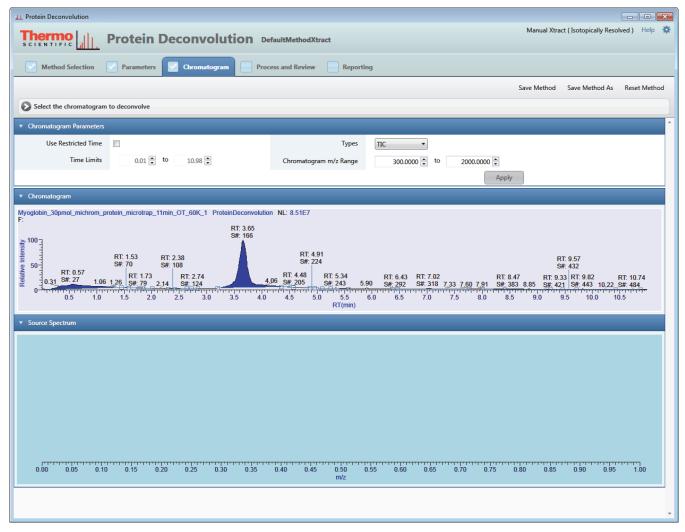

1. Click the **Chromatogram** tab if it is not already selected.

Figure 13 shows the Chromatogram page.

2 Deconvolving Isotopically Resolved Mass Spectra with the Xtract Algorithm

Selecting the Spectrum to Deconvolve

Figure 13. Chromatogram page for Xtract deconvolution

The Chromatogram page displays three panes:

- Chromatogram Parameters: Contains parameters that you can use to adjust the view in the Chromatogram pane.
- Chromatogram: Displays a chromatogram of the data in the RAW file. A chromatogram view shows the intensities of one or more masses as a function of time. By default, the Chromatogram pane displays a TIC chromatogram, as shown in Figure 13. The chromatogram is fully magnified. You can use the zooming and averaging functions in this pane to generate a spectrum (for instructions, see step 4).
- Source Spectrum: Displays the spectrum to deconvolve, either single-scan or averaged, that you selected in the Chromatogram pane. The mass spectrum in this pane is empty until you select a region in the chromatogram.

- 2. (Optional) Use the parameters in the Chromatogram Parameters pane to adjust the chromatogram displayed in the Chromatogram pane:
 - Use Restricted Time: Determines whether the Protein Deconvolution application zooms the part of the chromatogram that you designate with the Time Limits parameters.
 - (Default) Unselected: Displays the entire chromatogram.
 - Selected: Zooms the designated part of the chromatogram.
 - Time Limits: Specifies the beginning and the end of the chromatogram that you want to zoom.

The default values for both limits depend on the data in the RAW file.

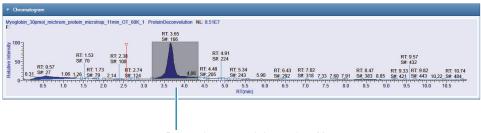
This parameter is only available when you select the Use Restricted Time check box.

- Types: Specifies the type of chromatogram to display in the Chromatogram pane:
 - (Default) TIC: Displays a total ion current chromatogram.
 - BPC: Displays a base peak chromatogram. The base peak is the largest peak in a spectrum.

For information on these types of chromatograms, see Table 5 on page 27.

• Chromatogram m/z Range: Specifies the range of mass-to-charge (*m*/*z*) values used to create the chromatogram. You can use this parameter to select a narrower range. The Xtract algorithm ignores the portions of the spectrum outside this range.

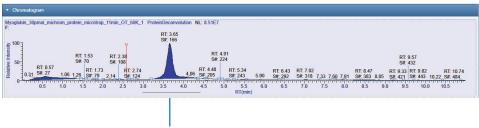
You might want to create a narrower range because the intact proteins are usually at a higher m/z, and any small molecule contaminants and background are below 600 m/z. Instead of creating a TIC using the full m/z range, the Xtract algorithm calculates a TIC by summing those protein peaks within the narrower m/z range. The resulting TIC is basically an extracted ion chromatogram (XIC). The Xtract algorithm redraws the BPC with the most intense peak within the selected m/z range rather than the whole spectrum. In both cases, any peaks for background components generally disappear from the chromatogram, and the only peak left is for the target proteins.


The default values for both limits depend on the data in the RAW file. The default is the entire chromatogram for the given spectrum.

3. If you want to return the parameters in the Chromatogram Parameters pane to the original default settings, click **Reset Method**; otherwise, click **Apply**.

If you change any parameters in this pane but do not click Apply and then click another tab, the message box shown in Figure 11 on page 15 appears. Click **Yes** to apply the parameter changes or **No** to restore the parameter defaults.

- 4. (Optional) Adjust the view in the Chromatogram pane:
 - To enlarge the view to see more detail, do one of the following:
 - Right-click and choose **Mode > Auto Zooming** from the shortcut menu if it is not already selected, and drag the red cross-shaped cursor over the peak or peaks of interest to form a box, as shown in Figure 14.


Figure 14. Enlarging an area by drawing a box around the peaks of interest

Draw a box around the peaks of interest.

 Keeping the left mouse button pressed, draw a line beneath the baseline of the peaks of interest, as shown in Figure 15.

Figure 15. Enlarging an area by drawing a line beneath the baseline of the peaks of interest

Draw a line under the baseline of the peaks of interest.

 Right-click and choose **Zoom In** from the shortcut menu to zoom the entire chromatogram.

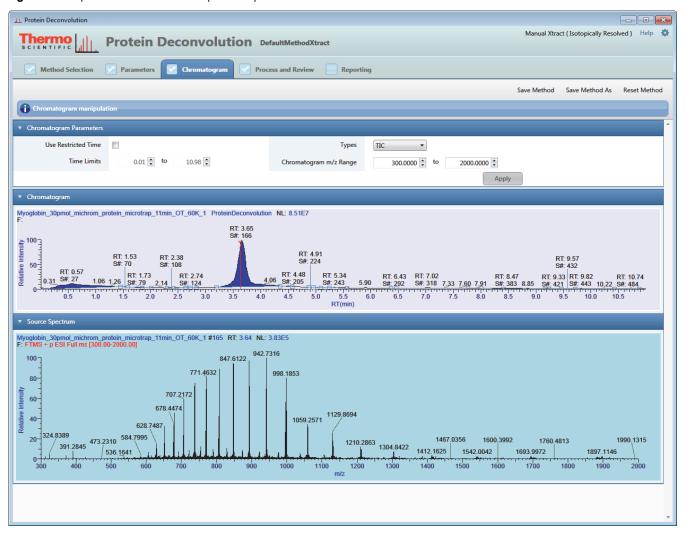
If there is no obvious chromatographic peak, change the limits of the m/z Range parameter in the Parameters page to find it.

- To shrink the view of the entire spectrum, right-click and choose **Zoom Out**.
- To reset the view to the original spectrum, right-click and choose **Reset Scale**.
- 5. Create a spectrum in the Source Spectrum pane by doing one of the following:
 - In the Chromatogram pane, place the red cross-shaped cursor on the chromatogram
 to select a single scan and to display the associated mass spectrum at that time point,
 as shown in Figure 16. You can use the left and right arrow keys to move to the
 previous or next time point in the chromatogram. The spectrum window
 automatically updates.

-or-

24

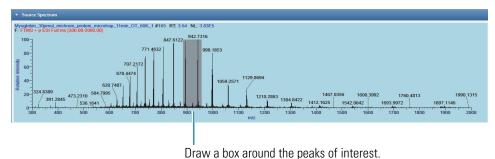
- Select a region of the chromatogram to display an averaged spectrum for all the scans in the selected region in the Source Spectrum pane:
 - i. Right-click and choose **Mode > Averaging**.
 - ii. Drag the red cross-shaped cursor across the area of interest.


The horizontal line of this cursor aids in assessing peak height. The Protein Deconvolution application calculates an average spectrum for this interval.

The averaging method is better suited to complex data than the single-scan method.

Tip (Optional) You can perform step 1 through step 5 in Qual Browser in the Xcalibur data system, and then right-click and choose **Export > Write to RAW File** so that you can import the file into the Protein Deconvolution application.

The spectrum appears in the Source Spectrum pane of the Chromatogram page, as shown in Figure 16.


Figure 16. Spectrum in the Source Spectrum pane for Xtract deconvolution

The Source Spectrum pane shows the actual spectrum, either single-scan or averaged, to be deconvolved. This spectrum also appears in the Process and Review pane for deconvolution. The Xtract algorithm can deconvolve centroid spectra and profile spectra. The Protein Deconvolution application automatically chooses the appropriate type of spectrum. The Source Spectrum pane displays profile information if it is available and centroid information if it is not.

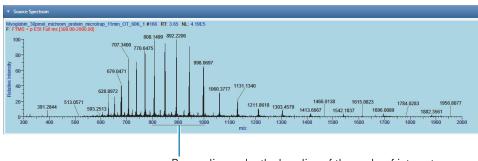

- Centroid data represents mass spectral peaks in terms of two parameters: the centroid (the weighted center of the mass) and the intensity (the normalized area of the peak). The data is displayed as a bar graph.
- Profile data represents the entire spectrum as a succession of points in m/z and intensity. The data is displayed as a line.
- 6. (Optional) Adjust the view in the Source Spectrum pane if necessary.
 - To enlarge the view to see more detail, do one of the following:
 - Drag the red cross-shaped cursor over the peak or peaks of interest to form a box, as shown in Figure 17.

Figure 17. Enlarging an area by drawing a box around the peaks of interest

 Keeping the left mouse button pressed, draw a line beneath the baseline of the peaks of interest, as shown in Figure 18.

Figure 18. Enlarging an area by drawing a line beneath the baseline of the peaks of interest

Draw a line under the baseline of the peaks of interest.

Right-click and choose **Zoom In** to enlarge the view of the entire spectrum.

Figure 19 gives an example of the enlarged isotopic clusters.

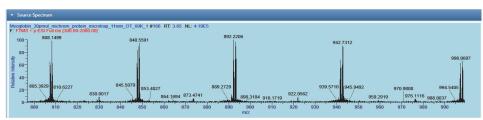


Figure 19. Enlarged peaks in the Source Spectrum for Xtract deconvolution

- To shrink the view of the entire spectrum, right-click and choose **Zoom Out**.
- To reset the view to the original spectrum, right-click and choose **Reset Scale**.

Unlike adjustments in the Chromatogram pane, which you use to select a spectrum for processing, adjustments in the Source Spectrum pane do not affect the spectrum that the Protein Deconvolution application deconvolves. In particular, they do not change the m/z range that the deconvolution algorithm uses.

7. When the spectrum is suitable for Xtract processing, click the **Process and Review** tab, and follow the instructions in "Deconvolving the Spectrum" on page 31.

Chromatogram Page Parameters

Table 5 lists the parameters that are available on the Chromatogram page for Xtract deconvolutions.

Table 5. Chromatogram page parameters for Xtract deconvolution (Sheet 1 of 3)

Parameter	Description
Chromatogram Parameters pane	Displays the parameters that govern the appearance of the chromatogram in the Chromatogram pane.
Use Restricted Time	Determines whether the Protein Deconvolution application zooms the part of the chromatogram that you define with the Time Limits parameters.
	• Selected: Zooms the specified part of the chromatogram.
	• (Default) Unselected: Displays the entire chromatogram.
Time Limits	Specifies the beginning and the end of the chromatogram that you want to zoom.
	The default values for both limits depend on the data in the RAW file.
	This parameter is only available when you select the Use Restricted Time check box.

Table 5. Chromatogram page parameters for Xtract deconvolution (Sheet 2 of 3)

Parameter	Description
Types	Determines the type of chromatogram displayed in the Chromatogram pane:
	• (Default) TIC: Displays a total ion current chromatogram, which shows the summed intensity across the entire range of masses being detected at every point in the analysis. The range is typically several hundred mass-to-charge units or more. In complex samples, the TIC chromatogram often provides limited information as multiple analytes elute simultaneously, obscuring individual species.
	 BPC: Displays a base peak chromatogram, which shows only the most intense peak in each spectrum. This means that the base peak chromatogram represents the intensity of the most intense peak at every point in the analysis. Base peak chromatograms often have a cleaner look and are therefore more informative than TIC chromatograms because the background is reduced by focusing on a single analyte at every point.
Chromatogram m/z Range	Specifies the range of mass-to-charge (m/z) values used as input to the chromatogram. The Xtract algorithm ignores the portions of the spectrum outside this range.
	The default values for both limits depend on the data in the RAW file. The default is the entire chromatogram for the given spectrum.
Apply	Implements the parameter settings that you selected. This button is only available if you have changed any parameter settings in the Chromatogram Parameters pane.
Chromatogram pane	Displays the chromatogram contained in the RAW file.
Relative Intensity (y axis)	Displays the ratio of the intensity of a specific peak to the intensity of the peak with the highest intensity.
RT (min) (x axis)	Displays the retention time of the spectrum, which is the time after injection at which a compound elutes. Retention time can also refer to the total time that the compound is retained on the chromatograph column.

Table 5. Chromatogram page parameters for Xtract deconvolution (Sheet 3 of 3)

Parameter	Description
Source Spectrum pane	Displays the spectrum that you selected.
Relative Intensity (y axis)	Displays the ratio of the intensity of a specific peak to the intensity of the peak with the highest intensity.
m/z (x axis)	Displays the mass-to-charge ratio of ions formed from molecules. This ratio is the quantity formed by dividing the mass of an ion, in daltons, by the number of charges carried by the ion.

Chromatogram Pane Shortcut Menu

When you right-click in the Chromatogram pane, a shortcut menu appears that contains the commands listed in Table 6.

Table 6. Chromatogram page shortcut menu

Parameter	Description
Mode	Determines whether dragging the cursor zooms or selects a range of scans to average.
	 Averaging: Averages the spectra for all the scans in the region that you drag the cursor over in the Chromatogram pane and displays them in the Source Spectrum pane.
	• (Default) Auto Zooming: Enlarges the area that you drag the cursor over in the Chromatogram pane without changing the view displayed in the Source Spectrum pane.
Scale	Restores the original chromatogram that first appeared in the Chromatogram pane.
Сору	Copies the view in the Chromatogram pane.
Zoom Out	Shrinks the view in the Chromatogram pane two times.
Zoom In	Enlarges the view in the Chromatogram pane two times.

Chromatogram Pane Header

The header in the Chromatogram pane displays the following information. The example values come from Figure 16 on page 25.

- The name of the RAW file, for example,
 Myoglobin_30pmol_microm_protein_microtrap_11min_OT_60K_1
- The name of the product, Protein Deconvolution
- NL: The intensity of the most abundant peak in the entire LC/MS run, for example, 8.51E7
- F: The scan filter used during the LC/MS run. The scan filter indicates the type of mass analyzer used to acquire the data in the raw data file and the ionization technique used. If this field is blank, no scan filter was used.

Source Spectrum Pane Shortcut Menu

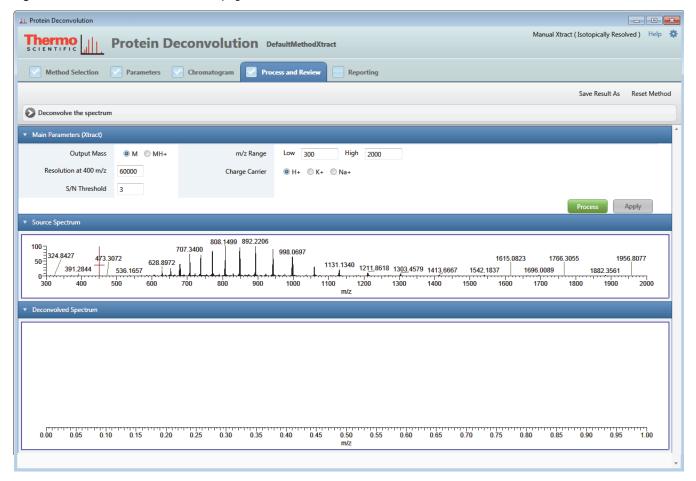
When you right-click in the Source Spectrum pane, a shortcut menu appears that contains all of the commands in Table 6 except Mode, but they apply to the Source Spectrum pane rather than the Chromatogram pane. For information on these commands, see Table 6 on page 29.

Source Spectrum Pane Header

The header in the Source Spectrum pane displays the following information. The example values come from Figure 16 on page 25.

- Name of the RAW file, for example, Myoglobin_30pmol_microm_protein_microtrap_11min_OT_60K_1
- Scan number or range of scan numbers, for example, #165
- RT: Retention time, which is the time in the mass chromatogram when any particular precursor ion is observed, for example, 3.64
- NL: The the intensity of the most abundant peak in the entire LC/MS run, for example, 3.83E5
- F: The scan filter used during the LC/MS run, for example, FTMS + p ESI Full ms [300.00–2000.00]. The scan filter indicates the type of mass analyzer used to acquire the data in the raw data file and the ionization technique used. If this field is blank, no scan filter was used.

Deconvolving the Spectrum


When you arrive at the Process and Review page, shown in Figure 20, you have already selected the chromatogram and source spectrum on the Chromatogram page. You can zoom in and out of these views, but you cannot change them on the Process and Review page. You must manually navigate back to the Chromatogram pane to change these views.

Use the Process and Review page to deconvolve the selected spectrum and to view the resulting data to ensure that the results make sense. You can also export the data into a Microsoft $Excel^{TM}$ spreadsheet for use in other applications.

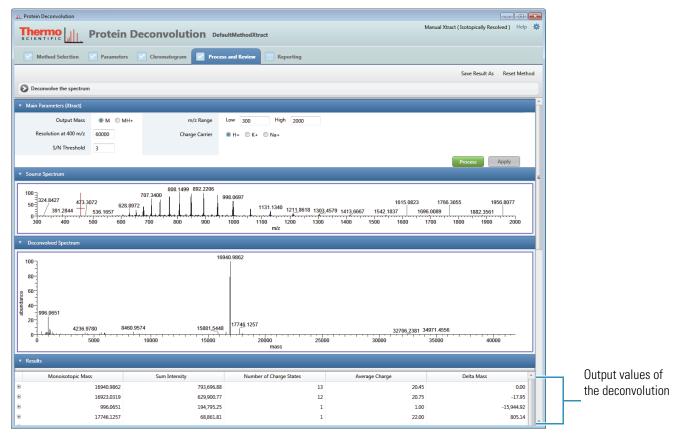
❖ To deconvolve the spectrum

If you are not already on the Process and Review page, click the Process and Review tab.
 Figure 20 shows the initial Process and Review page.

Figure 20. Initial Process and Review page for Xtract deconvolution

2 Deconvolving Isotopically Resolved Mass Spectra with the Xtract Algorithm

Deconvolving the Spectrum


The initial Process and Review page displays three panes:

- Main Parameters (Xtract): Displays the same parameters as those in the Main Parameters (Xtract) pane on the Parameters page so that you can adjust them without returning to the earlier page.
- Source Spectrum: Displays the spectrum that you selected in the Source Spectrum pane of the Chromatogram page.
- Deconvolved Spectrum: Displays the deconvolved spectrum resulting from applying the Xtract algorithm.
- 2. (Optional) Adjust any parameters in the Main Parameters (Xtract) pane. For information on these parameters, see Table 4 on page 18.
- 3. Click **Process** in the Main Parameters (Xtract) pane.

The Xtract algorithm finishes processing, producing a deconvolved spectrum and a list of the components that it detected.

The Protein Deconvolution application displays the output spectrum in the Deconvolved Spectrum pane as a set of peaks in mass and intensity. It displays the component list in the Results pane as a table of masses, intensities, charge state information, and quality scores. You can expand each entry in this table to display detailed information about the individual charge states that the entry contains.

As shown in Figure 21, the peaks in the Monoisotopic Mass, Sum Intensity, Number of Charge States, Average Charge, and Delta Mass columns represent the outputs of the deconvolution. Each peak in the Results table is composed of isotopic clusters. Each isotopic cluster in the original spectrum provides evidence for the cluster in the deconvolved spectrum.

Figure 21. Deconvolved spectrum in the Process and Review page for Xtract deconvolution

You can sort the data in each column of the peak table from lowest to highest or highest to lowest by clicking the column header. For example, click the Number of Charge States column header. The Protein Deconvolution application, which initially displays the number of charge states in this column in order from lowest to highest, now displays the number of charge states from highest to lowest. Click again to display the numbers from lowest to highest.

Click the plus sign (+) to the far left of a row in the peak table. As shown in Figure 22, eight new columns appear: Charge, Calculated Monoisotopic m/z, Monoisotopic Mass for This Charge, Mostabund m/z, Charge Normalized Intensity, Fit%, Fit% Left, and Fit% Right. These values are the isotopic clusters that constitute the peaks shown in the five output columns.

2 Deconvolving Isotopically Resolved Mass Spectra with the Xtract Algorithm

Deconvolving the Spectrum

_ - X Manual Xtract (Isotopically Resolved) Help Thermo Protein Deconvolution Deconvolve the spectrum Number of Charge States Output values of Calculated pic Mass for Fit % Left Fit % Right the deconvolution 13 1304.1613 16940.9034 1304,9230 7.931.33 72.30 0.00 0.00 17 997.5369 16940.9937 998.1291 73,765.95 81.10 0.00 0.00 942.1741 16941.0013 942.7312 140,337.86 92.20 0.00 0.00 18 127,290.56 892.6390 16940.9876 893.1665 8.30 15.50 20 848.0574 16940.9903 848.5591 141,482.81 94.40 0.00 0.00 21 807.7217 16940.9318 808.1973 24 943.89 66.10 0.00 0.00 Isotopic clusters 771.5068 77,086.50 22 771.0529 16940.9921 87.00 0.00 0.00 23 737.5726 738.0073 70,953.75 82.80 0.00 of the output 706.8824 16940.9924 707.2982 57,434.08 80.40 0.00 0.00 25 678.6474 16940.9748 679.0471 33,945.95 90.40 0.00 0.00 values 26 652.5843 16940.9686 652.9688 20,853.98 86.90 0.00 0.00 27 628.4518 16941.0059 13,974.13 628.8240 86.60 0.00 0.00 606.0431 16940.9890 606.4016 3,696.09 84.10 0.00 0.00 Output values of 16923.0319 629,900.77 12 -17.95 Calculated Monoisotopic Mass for Charge Normalized Intensity the deconvolution Fit % Left Fit % Right Monoisotopic m/z this Charge 73.30 17 996.4796 16923.0691 997.0724 47,761.39 0.00 0.00 941.1756 16923.0428 941.7327 89.10 0.00 18 83,056.26 0.00 892.2206 105,669.90 16923.0477 89.20 14.30 14.40 20 847.1588 16923.0393 847.6607 90.557.22 87.60 0.00 0.00 21 806.8658 16923.0641 807.3449 73,625.01 91.80 0.00 0.00 770.2359 16923.0486 770.6924 64,146.69 0.00 22 84.10 0.00 Isotopic clusters of 23 736.7912 16923.0498 737.2283 64,615.90 92.20 0.00 0.00 the output values 706.1335 16923.0670 706.5534 47,677.56 86.80 0.00 0.00 25 677,9285 16923.0196 678.3286 27 615.76 86.40 0.00 0.00 651.8930 16923.0233 652.2789 15,812.27 86.10 0.00 0.00 27 627.7862 16923.0180 628.1578 7,305.37 78.10 0.00

Figure 22. Hierarchical table in Results pane for Xtract deconvolution

In addition, the peak table includes the following features:

- The Charge column lists the charges of the individual isotopic clusters that comprise the total number shown in the Number of Charge States column.
- The Mostabund m/z column displays the mass-to-charge ratio of the most abundant isotope, or the height of the tallest peak in the isotopic distribution. When you click on a value in this column, the application automatically highlights the corresponding spectral line in the Source Spectrum pane, as shown in Figure 23. You might have to right-click and choose Reset to Scale to see the spectral line. In Figure 23, a blue spectral line marks the selected value of 808.1973 in the Mostabund m/z column.

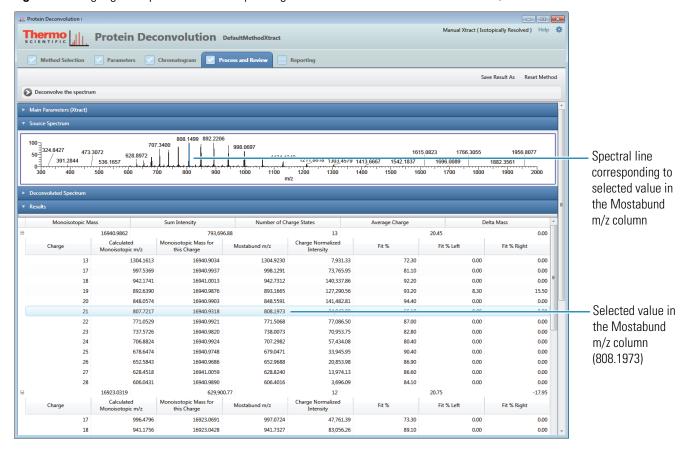


Figure 23. Highlighted spectral line corresponding to a selected value in the Mostabund m/z column

• The Monoisotopic Mass for This Charge column displays the calculated monoisotopic mass for each charge state. When you click on a value in this column, the application automatically zooms the mass-to-charge ratio (m/z) of the selected charge state in the Deconvolved Spectrum pane, as shown in Figure 24, highlighting it with a blue line. You might have to zoom in to see the highlighted line; for instructions, see "Selecting the Spectrum to Deconvolve" on page 21.

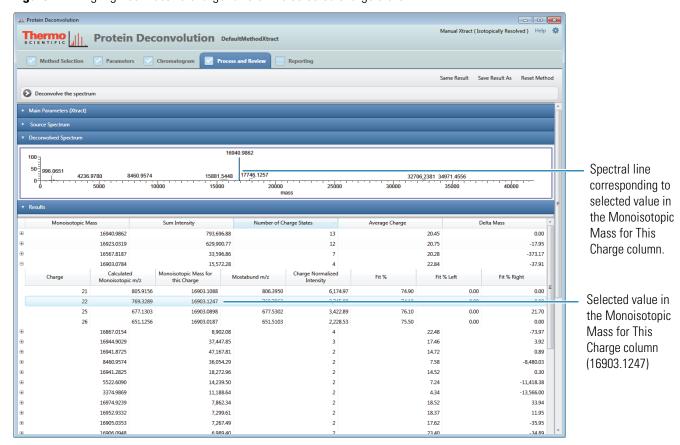


Figure 24. Highlighted mass-to-charge ratio of the selected charge state

• The Fit values are scores given as a confidence value for the listed isotopic clusters.

For more information on the columns in the Results table, see Table 7 on page 38.

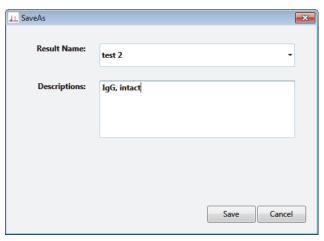
❖ To adjust the Xtract deconvolution results

- 1. If you are not satisfied with the deconvolution results, do the following:
 - Adjust the parameters in the Main Parameters (Xtract) pane on either the Process and Review page or the Parameters page, and click **Apply**.

-or-

- Return to the Parameters page, adjust the parameters in the Advanced Parameters (Xtract) pane, and click **Apply**.
- 2. When you finish adjusting the parameters, click **Process** on the Process and Review page again.

If you are satisfied with the results, you can save them by using the following procedure.


37

To save the results of the deconvolution

- 1. Click Save Result As.
- 2. In the SaveAs dialog box, do the following:
 - a. In the Result Name box, type the name of the results file.
 - b. In the Description box, type a brief description of the results.

The dialog box should resemble that shown in Figure 25.

Figure 25. SaveAs dialog box

c. Click Save.

The Protein Deconvolution application saves the results of the deconvolution in a file with an .sqlite suffix in the same directory where you stored the RAW files.

You can also copy and paste any one of the views in this window to a Microsoft PowerPoint $^{\text{\tiny TM}}$ presentation file.

3. If you want to analyze another averaged spectrum from the same LC/MS data file, navigate back to the Chromatogram pane and follow the instructions in "Selecting the Spectrum to Deconvolve" on page 21.

To export the results of the deconvolution

- 1. Double-right-click anywhere in the Results pane.
- 2. Choose **Export**.
- 3. In the Save As dialog box, browse to or type the name of the file to store the results in.
- 4. Click Save.

The Protein Deconvolution application stores the data in the Results pane in an Excel file with an .xls suffix.

Process and Review Page Parameters for the Xtract Algorithm

The Process and Review page displays parameters that you can set for the protein deconvolution, the source spectrum, the deconvolved spectrum, and a table showing the results of the deconvolution.

Table 7 describes the types of information available on the Process and Review page for Xtract deconvolutions.

Table 7. Process and Review page information for Xtract deconvolution (Sheet 1 of 2)

Parameter	Description
Main Parameters (Xtract) pane	The parameters in the Main Parameters (Xtract) pane are the same as those in the Main Parameters (Xtract) pane of the Parameters page. For information on the parameters on this page, see Table 4 on page 18.
Process	Deconvolves the spectrum with the Xtract algorithm.
Apply	Implements the parameter settings that you selected.
Source Spectrum pane	Displays the selected spectrum before deconvolution.
m/z (x axis)	Displays the mass-to-charge ratio of ions formed from molecules. This ratio is the quantity formed by dividing the mass of an ion, in daltons, by the number of charges carried by the ion.
Deconvolved Spectrum pane	Displays the deconvolved spectrum.
Abundance (y axis)	Displays the peak height.
Mass (x axis)	Displays the actual mass of an ion in atomic mass units.
Results pane	Displays the masses and intensities of the peaks that the Xtract algorithm detected during the deconvolution, along with their quality scores.
Monoisotopic Mass	Displays a weighted average of the monoisotopic masses of each charge state:
$\sum_{i}^{i}(Monosioniosotopic Mass = \frac{1}{i}$	isotopic Mass of This Charge × Charge Normalized Intensity)
wionoisotopic wass –	Sum Intensity
where i is the sequential orde	r of the charge in the Charge column.
Sum Intensity	Displays the sum of the intensities of the isotopic clusters in a charge state.
Number of Charge States	Displays the number of detected isotopic clusters for a given deconvolved mass.

39

Table 7. Process and Review page information for Xtract deconvolution (Sheet 2 of 2)

Parameter	Description
Average Charge	Displays the average of the charge numbers in the Charge column.
Delta Mass	Displays the difference between the mass of a specific compound and the mass of the highest-intensity compound.
Charge	Displays the imbalance between the number of protons (in the nuclei of the atoms) and the number of electrons that a molecular species (or adduct ion) possesses. If the species possesses more protons than electrons, its charge state is positive. If it possesses more electrons than protons, its charge state is negative.
Calculated Monoisotopic m/z	Displays the mass-to-charge ratio of the calculated monoisotopic mass for a specific charge state.
Monoisotopic Mass for This Charge	Displays the detected monoisotopic mass for a specific charge state.
Mostabund m/z	Displays the mass-to-charge ratio of the most abundant isotope, or the height of the tallest peak in the isotopic distribution.
Charge Normalized Intensity	Displays the quotient of the intensity divided for this charge by the relevant charge.
Fit%	Displays the quality of the match between a measured isotope pattern and an averagine distribution of the same mass. This column displays a value between 0 and 100%.
	• 0% requires only a poor fit between the measured pattern and the averagine pattern.
	• 100% requires a very good (even though not exact) fit between the measured pattern and the averagine pattern.
	A fit factor of 100% means that the measured isotope profile is absolutely identical with a theoretical averagine distribution.
Fit% Left	Displays the quality of the match between a measured isotope pattern and an averagine distribution that is one dalton smaller than the calculated monoisotopic mass.
Fit% Right	Displays the quality of the match between a measured isotope pattern and an averagine distribution that is one dalton larger than the calculated monoisotopic mass.

Displaying a Deconvolution Report

Displaying a Deconvolution Report

When you click Process on the Process and Review page, the Protein Deconvolution application generates a report displaying several aspects of the deconvolution so that you can track the progression of the data. You can view this report on the Reporting page. You can also save this report as a PDF file.

Note The default Xtract parameter settings provide a good balance between sensitivity and report size. If you adjust these parameters so that a report becomes filled with a large number of low-intensity noise peaks, a system without sufficient memory might hang. If your system hangs, restart the application and rerun it with a more restrictive set of parameters.

To display a report

• Click the **Reporting** tab when you have finished analyzing the data.

The Reporting page, partially shown in Figure 26, displays a summary of all results for a given data file. It contains the following sections:

- Sample Information Section
- Chromatogram Parameters Section
- Source Chromatogram Section
- Source Spectrum Section
- Main Parameters (Xtract) Section
- Advanced Parameters (Xtract) Section
- Deconvolved Spectrum Section
- Xtract Masses Table Section
- Source Spectrum Evidence Section

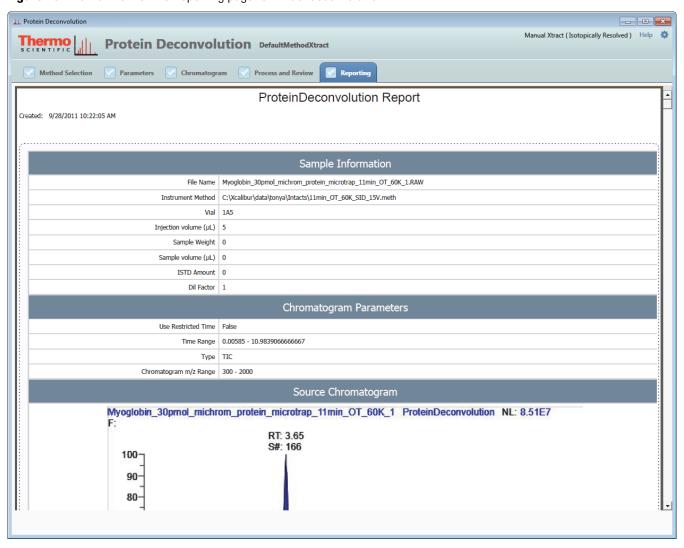


Figure 26. Partial view of the Reporting page for Xtract deconvolution

To save the report in a PDF file

1. Move the cursor near the bottom of the screen.

The Reporting page toolbar shown in Figure 27 appears.

2. Click the **Show Acrobat** icon, 🛴.

The Adobe[™] Acrobat[™] application toolbar appears at the top of the screen.

3. On the Adobe toolbar, click the **Save File** icon, **.**

The Save a Copy dialog box opens.

4. Specify the path and name of a PDF file to store the reports in, and click **Save**.

❖ To print a report

- 1. Hover the cursor near the bottom of the screen.
- 2. Click the **Print File** icon, ____, on the Reporting page toolbar shown in Figure 27.
- 3. In the Print dialog box, set the appropriate printing parameters, and click **OK**.

Reporting Page Toolbar

You can activate the Reporting page toolbar, shown in Figure 27, by hovering the cursor near the bottom of the screen.

Figure 27. Reporting page toolbar

This toolbar contains the following icons.

Table 8. Icons on the Reporting page toolbar

	Opens the Save a Copy dialog box so that you can save the report in a PDF file.
	Opens the Print dialog box so that you can print the reports.
•	Displays the previous page.
•	Displays the next page.
11 / 248	Displays the current page, followed by the total number of pages in the report. To move to a different page, double-click the current page, type the new page number, and press ENTER.
-	Enlarges the view.
+	Shrinks the view.
٨	Activates an Adobe Acrobat application toolbar so that you can perform the functions available in an Acrobat file.

Sample Information Section

The Sample Information section of the report, shown in Figure 28, displays information about the sample that the spectrum was taken from.

Figure 28. Sample Information pane for Xtract deconvolution

Sample Information	
File Name	Myoglobin_30pmol_michrom_protein_microtrap_11min_OT_60K_1.RAW
Instrument Method	C:\Xcalibur\data\tonya\Intacts\11min_OT_60K_SID_15V.meth
Vial	1A5
Injection volume (μL)	5
Sample Weight	0
Sample volume (μL)	0
ISTD Amount	0
Dil Factor	1

Table 9 lists the parameters in the Sample Information section. All the parameters in this section are read-only.

Table 9. Sample Information section parameters for Xtract deconvolution

Parameter	Description
File Name	Displays the name of the RAW file.
Instrument Method	Displays the name of the instrument method file.
Vial	Displays the position number of the sample in the autosampler.
Injection Volume (μL)	Displays the injection volume of the sample to be injected, in microliters.
Sample Weight	Displays the amount of a component in the sample.
Sample Volume (µL)	Displays the volume of a component in the sample.
ISTD Amount	Specifies the correction for the internal standard amount. If the value in this box is not 0.000, the value is used in an algorithm to correct for a case when any internal standard amounts specified in the active instrument method are correct, but when the amount of internal standard actually in one or more samples is different than the amount specified in the instrument method.
	This correction eliminates the necessity of remaking any samples to the internal standard concentrations or amounts specified in the instrument method and rerunning the samples.
Dil Factor	Specifies the dilution factor that was used to prepare the sample.

Chromatogram Parameters Section

The Chromatogram Parameters section, shown in Figure 29, displays the settings that you chose in the Chromatogram Parameters pane of the Chromatogram page. For more information on these parameters, see Table 5 on page 27.

Figure 29. Chromatogram Parameters section for Xtract deconvolution

Chromatogram Parameters	
Use Restricted Time	False
Time Range	0.00585 - 10.9839066666667
Туре	пс
Chromatogram m/z Range	300 - 2000

Source Chromatogram Section

The Source Chromatogram section, shown in Figure 30, displays the chromatogram contained in the RAW file. It is the same chromatogram that appears in the Chromatogram pane of the Chromatogram page.

Figure 30. Source Chromatogram section for Xtract deconvolution

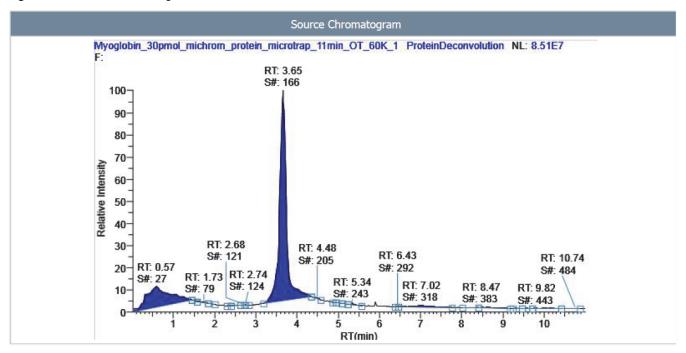


Table 10 lists the parameters in the Source Chromatogram section.

Table 10. Source Chromatogram section parameters for Xtract deconvolution

Parameter	Description
Relative Intensity (y axis)	Displays the ratio of the intensity of a specific peak to the intensity of the peak with the highest intensity.
RT (min) (x axis)	Displays the retention time of the spectrum, which is the time after injection at which a compound elutes. Retention time can also refer to the total time that the compound is retained on the chromatograph column.

Source Spectrum Section

The Source Spectrum section, shown in Figure 31, displays the spectrum that you selected in the Source Spectrum pane of the Chromatogram page.

Figure 31. Source Spectrum section for Xtract deconvolution

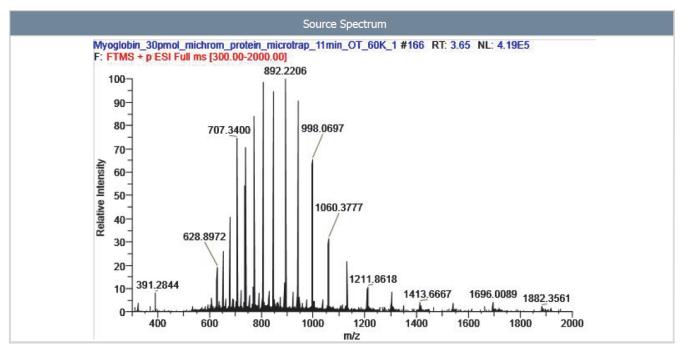


Table 11 lists the parameters in the Source Spectrum section.

Table 11. Source Spectrum section parameters for Xtract deconvolution

Parameter	Description
Relative Intensity (y axis)	Displays the ratio of the intensity of a specific peak to the intensity of the peak with the highest intensity.
m/z (x axis)	Displays the mass-to-charge ratio of ions formed from molecules. This ratio is the quantity formed by dividing the mass of an ion, in daltons, by the number of charges carried by the ion.

Main Parameters (Xtract) Section

The Main Parameters (Xtract) section, shown in Figure 32, displays the parameter settings that you selected on the Parameters page for the deconvolution. For information on these parameters, see Table 4 on page 18.

Figure 32. Main Parameters (Xtract) section for Xtract deconvolution

Main Parameters (Xtract)		
Output Mass	М	
Resolution at 400 m/z	60000	
S/N Threshold	3	
m/z Range	300 - 2000	
Charge Carrier	н	

Advanced Parameters (Xtract) Section

The Advanced Parameters (Xtract) section, shown in Figure 33, displays the parameter settings that you selected in the Advanced Parameters (Xtract) pane of the Parameters page for the deconvolution. For information on these parameters, see Table 4 on page 18.

Figure 33. Advanced Parameters (Xtract) section for Xtract deconvolution

Advanced Parameters (Xtract)		
Fit Factor (%)	44	
Remainder Threshold (%)	25	
Consider Overlaps	True	
Charge Range	1 - 50	
Minimum Intensity	1	
Expected Intensity Error	3	

Deconvolved Spectrum Section

The Deconvolved Spectrum section, shown in Figure 34, displays the same information that appears in the Deconvolved Spectrum pane of the Process and Review page.

Figure 34. Deconvolved Spectrum section for Xtract deconvolution

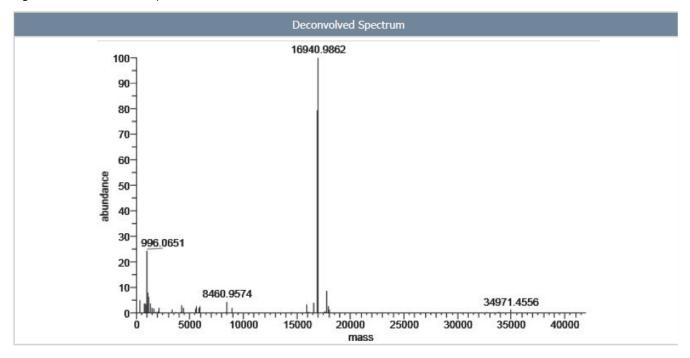


Table 12 lists the parameters in the Deconvolved Spectrum pane.

Table 12. Deconvolved Spectrum section parameters for Xtract deconvolution

Parameter	Description
Abundance (y axis)	Displays the peak height.
Mass (x axis)	Displays the actual mass of an ion in atomic mass units.

Xtract Masses Table Section

The Xtract Masses Table section, shown in Figure 35, displays the results of the deconvolution. It contains the same columns as those on the Results pane on the Process and Review page. For information on the columns in this table, see Table 7 on page 38.

2 Deconvolving Isotopically Resolved Mass Spectra with the Xtract Algorithm

Displaying a Deconvolution Report

Figure 35. Xtract Masses Table section for Xtract deconvolution

Xtract Masses Table				
Monoisotopic Mass	Sum Intensity	Number of Charge States	Average Charge	Delta Mass
16941.0072	840507.53	12	20.43	0.0000
16923.0527	581164.67	11	20.51	-17.9545
1128.9263	113721.91	1	1.00	-15812.0809
1128.8614	106507.24	1	1.00	-15812.1458
4235.9808	55973.63	1	4.00	-12705.0264
390.2771	49361.78	1	1.00	-16550.7301
4231.9814	42729.39	1	4.00	-12709.0258
1128.7929	41047.99	1	1.00	-15812.2143
16940.8478	39447.12	4	13.93	-0.1594
892.5224	38140.05	1	1.00	-16048.4848
5892.3163	36742.61	1	8.00	-11048.6909
706.5789	35678.18	1	1.00	-16234.4283
1128.7260	35332.31	1	1.00	-15812.2812
16922.8757	33654.34	2	15.13	-18.1315
847.8949	30735.29	1	1.00	-16093.1123
993.8789	25902.67	1	1.00	-15947.1283
810.1378	25346.32	1	1.00	-16130.8694
17727.3653	21977.45	1	22.00	786.3581
773.3179	21080.95	1	1.00	-16167.6893
803.6185	20019.82	1	1.00	-16137.3887
16567.8786	18596.26	6	21.11	-373.1286
33882.4087	17867.76	1	30.00	16941.4015

Source Spectrum Evidence Section

The Source Spectrum Evidence section, shown in Figure 36, displays a table and an accompanying graph for every scan in the sample. The table shows all the charge states that the Protein Deconvolution application detected. It displays the same parameters as those displayed in the Results pane on the Process and Review page. For information on these parameters, see Table 7 on page 38. The graph shows the isotopic clusters that are associated with a particular component.

The table shown in Figure 36 shows only a partial list of values.

Figure 36. Source Spectrum Evidence section for Xtract deconvolution

			Monoisotopic Ma	ss:16940.9831			
Charge	Calculated Monoisotopic m/z	Monoisotopic Mass for this Charge	Mostabund m/z	Charge Normalized Intensity	Fit %	Fit % Left	Fit % Righ
17	997.5369	16940.9937	998.1291	73809.4153	81.10	0.00	0.00
18	942.1741	16941.0013	942.7312	140337.8561	92.20	0.00	0.00
19	892.6390	16940.9876	893.1665	127290.5611	93.20	8.30	15.50
20	848.0574	16940.9903	848.5591	141482.8145	94.40	0.00	0.00
21	807.7217	16940.9657	808.1973	89391.6805	87.10	0.00	0.00
22	771.0529	16940.9921	771.5068	77086.5009	87.00	0.00	0.00
23	737.5726	16940.9820	738.0073	70953.7535	82.80	0.00	0.00
24	706.8824	16940.9924	707.2982	57434.0825	80.40	0.00	0.00
25	678.6474	16940.9748	679.0471	33945.9472	90.40	0.00	0.00
26	652.5843	16940.9686	652.9688	20853.9762	86.90	0.00	0.00
27	628.4518	16941.0059	628.8240	13975.7511	86.60	0.00	0.00
28	606.0431	16940.9890	606.4016	3696.7739	84.10	0.00	0.00
	F: FTMS + p ESI	Full ms [300.00-20	00.00] 892.2206				
	100-						

Table 13 lists the parameters in the Source Spectrum Evidence section.

m/2

 Table 13.
 Source Spectrum Evidence section parameters for Xtract deconvolution

Parameter	Description
Relative Intensity (y axis)	Displays the ratio of the intensity of a specific peak to the intensity of the peak with the highest intensity.
m/z (x axis)	Displays the mass-to-charge ratio.

Loading Saved Results

If you saved the results of a deconvolution, you can reload them at a later time.

❖ To load saved results

- 1. Click the **Method Selection** tab.
- 2. In the Experiment Types pane, click Load Previous Results.
- 3. In the Raw Data Directory of the Load Result File pane, type the path and name of the file containing the saved results or click the **Browse** button (...) to browse to the location of the file.
- 4. In the Select Result Files box, select the name of the .sqlite file containing the results, and click **Load**.

51

Deconvolving Isotopically Unresolved Mass Spectra with the ReSpect Algorithm

This chapter explains how to deconvolve isotopically unresolved mass spectra with the ReSpect algorithm.

Contents

- Setting Up a ReSpect Protein Deconvolution
- Creating a ReSpect Parameter Set
- Selecting the Spectrum to Deconvolve
- Deconvolving the Spectrum
- Displaying a Deconvolution Report
- Loading Saved Results

When you generate a deconvolved spectrum from an isotopically unresolved intact protein mass spectrum, the source MS spectrum can be a single spectrum from an LC/MS data file, an averaged spectrum from an LC/MS data file, or a single spectrum from a RAW file containing only that spectrum. The ReSpect algorithm then transforms this source spectrum into a mass spectrum and displays it in a new pane labeled with mass units rather than with the mass-to-charge ratio (m/z) on the x axis. For information on the ReSpect algorithm, see "ReSpect Algorithm" on page 2.

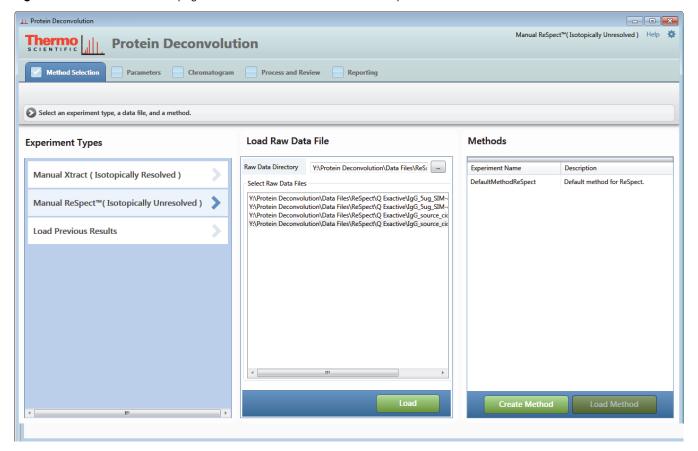
Setting Up a ReSpect Protein Deconvolution

First select the ReSpect deconvolution algorithm, a RAW file, and a parameter set.

- To set up a protein deconvolution with the ReSpect algorithm
 - 1. Click the **Method Selection** tab if it is not already selected.

The Method Selection page contains three panes:

• Experiment Types pane: Displays the available deconvolution algorithms and a command that you can use to load the saved results of previous deconvolutions.


3 Deconvolving Isotopically Unresolved Mass Spectra with the ReSpect Algorithm

Setting Up a ReSpect Protein Deconvolution

- Load Raw Data File pane: Displays the list of the available RAW files for the selected algorithm.
- Methods pane: Displays the available parameter sets.
- 2. In the Experiment Types pane, click Manual ReSpect (Isotopically Unresolved).
- 3. In the Load Raw Data File pane, select the RAW data file that contains the spectral data for your sample:
 - a. In the Directory box, type the path of the RAW file or click the Browse button (...) to browse to the directory containing the file.
 - b. In the Select Raw Data Files box, click the name of the RAW file.
 - c. Click Load.

Several more tabs appear along the top of the Protein Deconvolution window, and the available parameter sets appear in the Methods pane, as shown in Figure 37.

Figure 37. Method Selection page after the RAW file is loaded for ReSpect deconvolution

- 4. Specify the extraction parameter set to use by doing one of the following in the Methods pane:
 - If one of the existing parameters sets contains the appropriate extraction parameters, select the name of the parameter set of interest and click **Load Method**. The Protein Deconvolution application automatically transfers you to the Chromatogram page if there is a chromatogram and to the Process and Review page if there is a single spectrum. To use the Chromatogram page, follow the instructions in "Selecting the Spectrum to Deconvolve" on page 66. To use the Process and Review page, follow the instructions in "Deconvolving the Spectrum" on page 76.
 - If the existing parameter sets do not contain the appropriate extraction parameters or if there are no existing parameter sets, click **Create Method** to create a new parameter set. The Protein Deconvolution application automatically transfers you to the Parameters page. Follow the instructions in "Creating a ReSpect Parameter Set" on page 54.

Method Selection Page Parameters

The Method Selection page consists of the Experiment Types, Load Raw Data File, and Methods panes. The parameters in these panes are the same for Xtract and ReSpect deconvolutions.

Experiment Types Pane Parameters

Table 14 lists the parameters in the Experiment Types pane of the Method Selection page.

Table 14. Experiment Types pane parameters

Parameter	Description
Manual Xtract (Isotopically Resolved)	Deconvolves an isotopically resolved mass spectrum with the Xtract algorithm.
Manual ReSpect (Isotopically Unresolved)	Deconvolves an isotopically unresolved mass spectrum with the ReSpect algorithm.
Load Previous Results	Loads the saved results of a previous deconvolution.

Load Raw Data File Pane Parameters

Table 15 lists the parameters in the Load Raw Data File pane of the Method Selection page.

Table 15. Load Raw Data File pane parameters

Parameter	Description
Raw Data Directory	Specifies the directory where the RAW file containing the spectrum to deconvolve is located.
Select Raw Data Files	Specifies the name of the RAW file containing the spectrum to deconvolve.
Load	Loads the specified RAW file.

Methods Pane Parameters

Table 16 lists the parameters in the Methods pane of the Method Selection page.

Table 16. Methods pane parameters

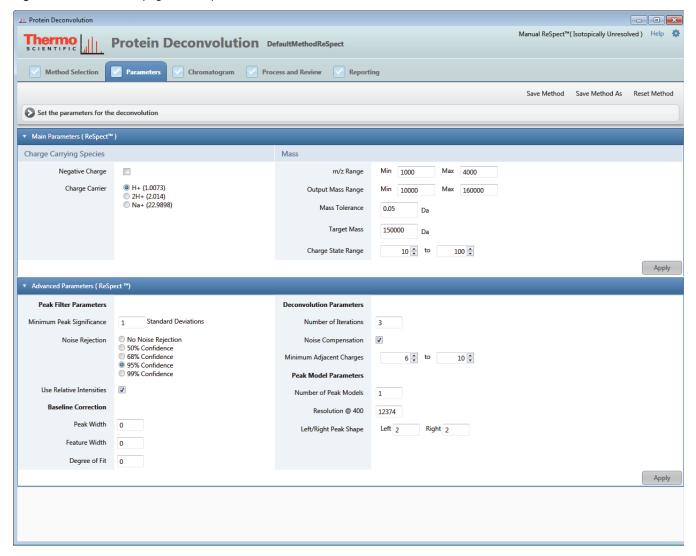
Parameter	Description
Experiment Name	Specifies the name of the parameter set to use in the deconvolution.
Description	Briefly describes the parameter set to use in the deconvolution.
Create Method	Activates the Parameters page so that you can specify the parameters for a new parameter set.
Load Method	Loads the specified existing parameter set.

Creating a ReSpect Parameter Set

When you click Create Method in the Methods pane of the Method Selection page, the Protein Deconvolution application automatically transfers you to the Parameters page.

The Parameters page features two panes containing parameters that control the deconvolution:

- Main Parameters (ReSpect): Displays basic parameters that might change often. These parameters also appear on the Process and Review page.
- Advanced Parameters (ReSpect): Displays parameters that only infrequently need changing. Only experienced users should change these parameters.


For detailed descriptions of these parameters, see Table 17 on page 60.

❖ To create a ReSpect parameter set

1. Click the **Parameters** tab if it is not already selected.

The default settings for the ReSpect algorithm automatically populate the parameter boxes on the Parameters page, as shown in Figure 38.

Figure 38. Parameters page for ReSpect deconvolution

- 2. (Optional) Change the appropriate parameters in the Main Parameters (ReSpect) pane:
 - Negative Charge: Specifies whether the data was acquired in positive charge mode (through protonation) or negative charge mode (through deprotonation) during the ESI process:
 - (Default) Unselected: The data was acquired in positive charge mode.
 - Selected: The data was acquired in negative charge mode.
 - Charge Carrier: Specifies the adduct ions used during ESI processing. Adduct ions bring the charge to the molecule that converts it to an ion.
 - (Default) H+ (1.0073): Specifies that the adduct was hydrogen.

56

- 2H+ (2.014): Specifies that the adduct was deuterium.
- Na+ (22.9898): Specifies that the adduct was sodium.
- m/z Range: Specifies the portion of the input spectrum that the ReSpect algorithm processes.
 - Min: Specifies the lowest end of the input spectrum.
 - Max: Specifies the highest end of the input spectrum.

The default range is 1000 through 4000.

- Output Mass Range: Specifies the required output mass range.
 - Min: Specifies the lowest end of the mass range.
 - Max: Specifies the highest end of the mass range.

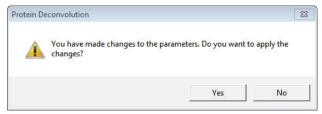
The default range is 10 000 through 16 000.

• Mass Tolerance: Specifies the global allowable error for the mass-to-charge (*m/z*) values of peaks in a charge state series as they appear in the input spectrum. This parameter compensates for calibration errors and the effects of local noise, peak overlaps, and other sources of mismatches between the model and the actual peak profiles.

The default is 0.05 Da/charge number.

• Target Mass: Specifies an expected target mass, in daltons, to use in calculating the peak model. This parameter is critical but does not have to be exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (~20 kDa), heavy chains (~50 kDa), and the intact antibody are found in the same sample, choose 75 kDa as the target mass.

The default is 150 000 Da.


Charge State Range: Sets the allowable range for the number of charge states that
must appear for a component to be recognized. The ReSpect algorithm rejects
potential components with fewer than the minimum or greater than the maximum
number of charge states.

The default range is 10 through 100.

3. If you want to return the parameters in the Main Parameters (ReSpect) pane to their original default settings, click **Reset Method**; otherwise, click **Apply**.

If you make changes to the parameters on this pane but do not apply them and then click another tab, the message box shown in Figure 39 appears. Click **Yes** to apply the parameter changes or **No** to restore the parameter defaults.

Figure 39. Reminder to apply parameters

- 4. (Optional) If you are an experienced user, change the appropriate parameters in the Advanced Parameters (ReSpect) pane:
 - Minimum Peak Significance: Specifies a significance level, in standard deviations, that determines whether the ReSpect algorithm discards a peak as a noise feature or retains it as a legitimate peak. The ReSpect algorithm retains peaks equal to or greater than this selected significance level. The higher the significance level, the more stringent this filtering is.
 - Noise Rejection: Removes noise and irrelevant features from the list of peaks.
 - No Noise Rejection: Retains all peaks and features.
 - 50% Confidence: Rejects all features up to a significance corresponding to 0.7 standard deviations.
 - 68% Confidence: Rejects all features up to a significance corresponding to 1 standard deviation.
 - (Default) 95% Confidence: Rejects all features up to a significance corresponding to 2 standard deviations.
 - 99% Confidence: Rejects all features up to a significance corresponding to 3 standard deviations.
 - Use Relative Intensities: Determines whether the Protein Deconvolution application calculates the intensity of each peak relative to the noise level of the spectrum in the vicinity of the peak. For more information on this option, see Table 17 on page 60.
 - (Default) Selected: Calculates the intensity of each peak relative to the noise level of the spectrum in the vicinity of the peak.
 - Unselected: Calculates global noise, that is, the noise across the entire spectrum.

This option is particularly useful with spectra where the noise level varies significantly across the spectrum, especially for highly complex spectra for 150 kDa antibodies. This "noise" is not a product of the instrument but is instead due to the high complexity of the sample.

Peak Width: Specifies the half-height width of a typical peak, in data intervals. This
value does not need to be exact. The default is 0, which causes the ReSpect algorithm
to calculate a peak width automatically.

- Feature Width: Specifies how wide the feature of the baseline should be, in data points. The default is 0, which causes the ReSpect algorithm to calculate a feature width automatically.
- Degree of Fit: Specifies the offset by which to lower or raise the baseline height. This adjustment is non-linear so that its effect is proportional to the underlying noise amplitude. Set Degree of Fit to 0 for automatic computation. Set Degree of Fit to 1 for manual computation. The range is 0.0–2.0. The default is 0.

Values less than 1 lower the computed baseline, and values greater than 1 raise it.

- Number of Iterations: Specifies how far the deconvolution is to proceed.
 - 0: Use when a crude deconvolution is sufficient. Use only for data with a large variation in peak width or where speed is important.
 - 1: Use where there is a substantial change in peak width across the data to be processed.
 - 2: Use if there is a significant change in peak width across the data or where it is not possible to accurately model the peak profile.
 - (Default) 3: Use when a high-quality deconvolution is required, and there is only
 a small change in peak width across the region to be processed.
 - 4: Use when extreme deconvolutions are required. This value is only relevant for good signal-to-noise data where there is only a very small change in peak width across the region to be processed. The designed model must also be a good fit to the peak profiles.

The range is 0 through 4. Non-integer values are allowed. Negative values indicate an absolute number of iterations to perform.

Decreasing the value for this parameter reduces the computation time. Starting at 0, the computation time roughly doubles for each integer increase.

- Noise Compensation: Determines whether the ReSpect algorithm improves signal detection where the noise level varies across the data.
 - (Default) Selected: Improves signal detection where the noise level varies across the data. The Noise Compensation option is selected by default.
 - Unselected: Does not improve signal detection where the noise level varies across the data.
- Minimum Adjacent Charges: Specifies the minimum number of peaks in a row that must appear at the low and the upper end of the input spectrum if the ReSpect algorithm is to recognize a component as real. The ReSpect algorithm rejects potential components with fewer than this number of adjacent peaks.

The minimum values for this parameter are 1 and 1, and there is no maximum value. The default values are 6 and 10.

• Number of Peak Models: Controls the resolution of the peak modeling process by dividing the observed *m/z* range into a uniformly spaced set of regions equal to this number. The Protein Deconvolution application generates a single peak model for each of these regions on the basis of the observed *m/z* value and instrument resolution at the midpoint of each region.

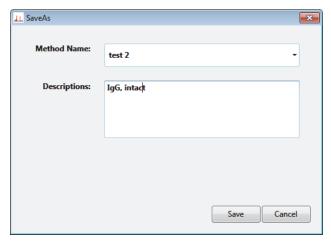
The default is 1.

- Resolution @ 400: Defines the resolution at mass 400. This parameter is read-only.
- Left/Right Peak Shape: Control the sharpness of a peak.

The default for both the left and the right peak shape is 2.

5. If you want to return the parameters in the Advanced Parameters (ReSpect) pane to their original default settings, click **Reset Method**; otherwise, click **Apply**.

If you change any parameters in this pane but do not click Apply and then click another tab, the message box shown in Figure 39 on page 57 appears. Click **Yes** to apply the parameter changes or **No** to restore the parameter defaults.


6. Click **Save Method** or **Save Method As** to save the parameter set and give it a name.

The Save Method command saves current parameter values to the existing method, overwriting any previous values. The Save Method As command saves parameter values to a new method.

- 7. In the Save or SaveAs dialog box, do the following:
 - a. In the Method Name box, type a name for the parameter set.
 - b. In the Description box, briefly describe the parameter set. For example, you might want to describe the sample and the proteins analyzed.

Figure 40 shows a completed dialog box.

Figure 40. Completed SaveAs dialog box

c. Click Save.

Note The Protein Deconvolution application automatically saves all parameter sets that you create to the database in

C:\ProgramData\Thermo\ProteinDeconvolution\methods.sqlite. You cannot save individual method files to a directory that you choose.

The next time that you access the Method Selection page and click Manual ReSpect (Isotopically Unresolved), you will see the name of the parameter set that you saved in the Methods pane.

Note You cannot delete existing parameter sets from the Methods pane except by deleting the entire file from the C:\ProgramData\Thermo\ProteinDeconvolution\methods.sqlite database.

The application transfers you to the Chromatogram page so that you can select the spectrum to deconvolve. For information on this process, see "Selecting the Spectrum to Deconvolve" on page 21.

Parameters Page Parameters for the ReSpect Algorithm

Table 17 describes the parameters on the Parameters page for a ReSpect deconvolution.

Table 17. Parameters page parameters for ReSpect deconvolution (Sheet 1 of 7)

Parameter	Description
Main Parameters (ReSpect) pane	Displays basic parameters that might change often. These parameters also appear on the Process and Review page.
Charge Carrying Species	Displays parameters that control information about the adduct: what it is and whether it is a plus or minus charge.
Negative Charge	Indicates whether the data was acquired in positive charge mode (through protonation) or negative charge mode (through deprotonation) during the ESI process:
	• Selected: The data was acquired in negative charge mode.
	• (Default) Unselected: The data was acquired in positive charge mode.
Charge Carrier	Specifies the adduct ions used during ESI processing. Adduct ions bring the charge to the molecule that converts it to an ion.
	• (Default) H+ (1.0073): Specifies that the adduct was hydrogen.
	• 2H+ (2.014): Specifies that the adduct was deuterium.
	• Na+ (22.9898): Specifies that the adduct was sodium.

Table 17. Parameters page parameters for ReSpect deconvolution (Sheet 2 of 7)

values of peaks in a charge state series as they appear in the inp spectrum. This parameter compensates for calibration errors at the effects of local noise, peak overlaps, and other sources of mismatches between the model and the actual peak profiles. Default: 0.05 Da/charge number Target Mass Specifies an expected target mass, in daltons, to use in calculating the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (~20 kDa), heavy chains (~50 kDa), at the intact antibody are found in the same sample, choose 75 k as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that mappear for a component to be recognized. The ReSpect algorithms.	Parameter	Description
algorithm processes. • Min: Specifies the lowest end of the input spectrum. Default: 1000 • Max: Specifies the highest end of the input spectrum. Default: 4000 Output Mass Range Specifies the required output mass range: • Min: Specifies the lowest end of the mass range. Default: 10 000 • Max: Specifies the highest end of the mass range. Default: 16 0 000 Mass Tolerance Specifies the global allowable error for the mass-to-charge (m/z values of peaks in a charge state series as they appear in the inp spectrum. This parameter compensates for calibration errors at the effects of local noise, peak overlaps, and other sources of mismatches between the model and the actual peak profiles. Default: 0.05 Da/charge number Target Mass Specifies an expected target mass, in daltons, to use in calculate the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficien for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. Fexample, if the IgG light (-20 kDa), heavy chains (-50 kDa), a the intact antibody are found in the same sample, choose 75 k as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that m appear for a component to be recognized. The ReSpect algoritie rejects potential components with fewer than the minimum or	Mass	
Default: 1000 • Max: Specifies the highest end of the input spectrum. Default: 4000 Output Mass Range Specifies the required output mass range: • Min: Specifies the lowest end of the mass range. Default: 10 000 • Max: Specifies the highest end of the mass range. Default: 160 000 Mass Tolerance Specifies the global allowable error for the mass-to-charge (m/z values of peaks in a charge state series as they appear in the inp spectrum. This parameter compensates for calibration errors at the effects of local noise, peak overlaps, and other sources of mismatches between the model and the actual peak profiles. Default: 0.05 Da/charge number Target Mass Specifies an expected target mass, in daltons, to use in calculating the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (~20 kDa), heavy chains (~50 kDa), the intact antibody are found in the same sample, choose 75 k as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that mappear for a component to be recognized. The ReSpect algoriting rejects potential components with fewer than the minimum or	m/z Range	
Max: Specifies the highest end of the input spectrum. Default: 4000 Output Mass Range Specifies the required output mass range:		• Min: Specifies the lowest end of the input spectrum.
Output Mass Range Specifies the required output mass range: • Min: Specifies the lowest end of the mass range. Default: 10 000 • Max: Specifies the highest end of the mass range. Default: 160 000 Mass Tolerance Specifies the global allowable error for the mass-to-charge (m/z values of peaks in a charge state series as they appear in the inp spectrum. This parameter compensates for calibration errors at the effects of local noise, peak overlaps, and other sources of mismatches between the model and the actual peak profiles. Default: 0.05 Da/charge number Target Mass Specifies an expected target mass, in daltons, to use in calculate the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (-20 kDa), heavy chains (-50 kDa), at the intact antibody are found in the same sample, choose 75 k as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that mappear for a component to be recognized. The ReSpect algoriting rejects potential components with fewer than the minimum or		Default: 1000
Output Mass Range Specifies the required output mass range: • Min: Specifies the lowest end of the mass range. Default: 10 000 • Max: Specifies the highest end of the mass range. Default: 160 000 Mass Tolerance Specifies the global allowable error for the mass-to-charge (m/z values of peaks in a charge state series as they appear in the inp spectrum. This parameter compensates for calibration errors at the effects of local noise, peak overlaps, and other sources of mismatches between the model and the actual peak profiles. Default: 0.05 Da/charge number Target Mass Specifies an expected target mass, in daltons, to use in calculate the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (-20 kDa), heavy chains (-50 kDa), the intact antibody are found in the same sample, choose 75 k as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that m appear for a component to be recognized. The ReSpect algoriting rejects potential components with fewer than the minimum or		• Max: Specifies the highest end of the input spectrum.
• Min: Specifies the lowest end of the mass range. Default: 10 000 • Max: Specifies the highest end of the mass range. Default: 160 000 Mass Tolerance Specifies the global allowable error for the mass-to-charge (m/z values of peaks in a charge state series as they appear in the inp spectrum. This parameter compensates for calibration errors at the effects of local noise, peak overlaps, and other sources of mismatches between the model and the actual peak profiles. Default: 0.05 Da/charge number Target Mass Specifies an expected target mass, in daltons, to use in calculate the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficien for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (~20 kDa), heavy chains (~50 kDa), at the intact antibody are found in the same sample, choose 75 k as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that mappear for a component to be recognized. The ReSpect algoriting rejects potential components with fewer than the minimum or		Default: 4000
Default: 10 000 • Max: Specifies the highest end of the mass range. Default: 160 000 Mass Tolerance Specifies the global allowable error for the mass-to-charge (m/z values of peaks in a charge state series as they appear in the inp spectrum. This parameter compensates for calibration errors at the effects of local noise, peak overlaps, and other sources of mismatches between the model and the actual peak profiles. Default: 0.05 Da/charge number Target Mass Specifies an expected target mass, in daltons, to use in calculating the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (~20 kDa), heavy chains (~50 kDa), at the intact antibody are found in the same sample, choose 75 k as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that mappear for a component to be recognized. The ReSpect algoriting rejects potential components with fewer than the minimum or	Output Mass Range	Specifies the required output mass range:
• Max: Specifies the highest end of the mass range. Default: 160 000 Mass Tolerance Specifies the global allowable error for the mass-to-charge (m/z values of peaks in a charge state series as they appear in the inp spectrum. This parameter compensates for calibration errors at the effects of local noise, peak overlaps, and other sources of mismatches between the model and the actual peak profiles. Default: 0.05 Da/charge number Target Mass Specifies an expected target mass, in daltons, to use in calculate the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (~20 kDa), heavy chains (~50 kDa), at the intact antibody are found in the same sample, choose 75 k as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that mappear for a component to be recognized. The ReSpect algoriting rejects potential components with fewer than the minimum or		• Min: Specifies the lowest end of the mass range.
Default: 160 000 Mass Tolerance Specifies the global allowable error for the mass-to-charge (m/z values of peaks in a charge state series as they appear in the inp spectrum. This parameter compensates for calibration errors at the effects of local noise, peak overlaps, and other sources of mismatches between the model and the actual peak profiles. Default: 0.05 Da/charge number Target Mass Specifies an expected target mass, in daltons, to use in calculating the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (~20 kDa), heavy chains (~50 kDa), at the intact antibody are found in the same sample, choose 75 k as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that mappear for a component to be recognized. The ReSpect algoriting rejects potential components with fewer than the minimum or		Default: 10 000
Mass Tolerance Specifies the global allowable error for the mass-to-charge (<i>m/z</i> values of peaks in a charge state series as they appear in the inp spectrum. This parameter compensates for calibration errors at the effects of local noise, peak overlaps, and other sources of mismatches between the model and the actual peak profiles. Default: 0.05 Da/charge number Target Mass Specifies an expected target mass, in daltons, to use in calculating the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (~20 kDa), heavy chains (~50 kDa), at the intact antibody are found in the same sample, choose 75 k as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that mappear for a component to be recognized. The ReSpect algoriting rejects potential components with fewer than the minimum or		 Max: Specifies the highest end of the mass range.
values of peaks in a charge state series as they appear in the inp spectrum. This parameter compensates for calibration errors at the effects of local noise, peak overlaps, and other sources of mismatches between the model and the actual peak profiles. Default: 0.05 Da/charge number Target Mass Specifies an expected target mass, in daltons, to use in calculating the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (~20 kDa), heavy chains (~50 kDa), at the intact antibody are found in the same sample, choose 75 k as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that mappear for a component to be recognized. The ReSpect algorithm rejects potential components with fewer than the minimum or		Default: 160 000
Target Mass Specifies an expected target mass, in daltons, to use in calculation the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (~20 kDa), heavy chains (~50 kDa), at the intact antibody are found in the same sample, choose 75 k as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that mappear for a component to be recognized. The ReSpect algorithm rejects potential components with fewer than the minimum or	Mass Tolerance	
the peak model. This parameter is critical but does not have to exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (~20 kDa), heavy chains (~50 kDa), at the intact antibody are found in the same sample, choose 75 km as the target mass. Default: 150 000 Da Charge State Range Sets the allowable range for the number of charge states that mappear for a component to be recognized. The ReSpect algorithm rejects potential components with fewer than the minimum or		Default: 0.05 Da/charge number
Charge State Range Sets the allowable range for the number of charge states that m appear for a component to be recognized. The ReSpect algorithm rejects potential components with fewer than the minimum or	Target Mass	Specifies an expected target mass, in daltons, to use in calculating the peak model. This parameter is critical but does not have to be exact; a value within 5 and 10% of the actual target is sufficient for best performance. For samples where the range of masses is broad, choose a mass somewhere in the middle of the range. For example, if the IgG light (~20 kDa), heavy chains (~50 kDa), and the intact antibody are found in the same sample, choose 75 kDa as the target mass.
appear for a component to be recognized. The ReSpect algorithms rejects potential components with fewer than the minimum or		Default: 150 000 Da
	Charge State Range	Sets the allowable range for the number of charge states that must appear for a component to be recognized. The ReSpect algorithm rejects potential components with fewer than the minimum or greater than the maximum number of charge states.
Default range: 10 through 100		Default range: 10 through 100
Default range: 10 through 100		Default range: 10 through 100

Table 17. Parameters page parameters for ReSpect deconvolution (Sheet 3 of 7)

Parameter	Description	
Advanced Parameters (ReSpect) pane	Displays parameters that only infrequently need changing. Only experienced users should change these parameters.	
Peak Filter Parameters	Displays parameters that control how potential peaks in the spectrum that might be associated with compounds are identified and which ones are excluded as being too small. The Protein Deconvolution application applies these parameters after it applies the Baseline Correction parameters.	
Minimum Peak Significance	Specifies a significance level, in standard deviations, that determines whether the ReSpect algorithm discards a peak as a noise feature or retains it as a legitimate peak. The ReSpect algorithm retains peaks equal to or greater than this selected significance level. The higher the significance level, the more stringent this filtering is. Default: 1	
Noise Rejection	 Removes noise and irrelevant features from the list of peaks. No Noise Rejection: Retains all peaks and features. 50% Confidence: Rejects all features up to a significance corresponding to 0.7 standard deviations. 68% Confidence: Rejects all features up to a significance corresponding to 1 standard deviation. (Default) 95% Confidence: Rejects all features up to a significance corresponding to 2 standard deviations. 99% Confidence: Rejects all features up to a significance corresponding to 3 standard deviations. 	

Table 17. Parameters page parameters for ReSpect deconvolution (Sheet 4 of 7)

Parameter

Description

Use Relative Intensities

Calculates the intensity of each peak relative to the noise level of the spectrum in the vicinity of the peak. The ReSpect algorithm performs this calculation automatically when you select the Noise Compensation option, which is selected by default.

The relative intensity reflects the signal-to-noise ratio of a feature and informally attempts to capture its reliability in the deconvolution results. Relative intensity is more effective than intensity if the noise level varies appreciably in different regions of the spectrum, as is often the case in mass spectrometry.

The Use Relative Intensities parameter mainly acts as a confidence filter to distinguish the peaks in a peak table that are likely to be true signals from those likely to be noise artifacts. For this purpose, relative intensities perform at least as well as intensities and sometimes better.

Relative intensities are not suitable for quantitative comparisons of signal strengths, so intensities should be used instead. The Use Relative Intensities parameter is therefore not the default option for deisotoping.

This option is particularly useful with spectra where the noise level varies significantly across the spectrum, especially for highly complex spectra for 150 kDa antibodies. This "noise" is not a product of the instrument but is instead due to the high complexity of the sample.

- (Default) Selected: Calculates the intensity of each peak relative to the noise level of the spectrum in the vicinity of the peak.
- Unselected: Does not calculate the intensity of each peak relative to the noise level of the spectrum in the vicinity of the peak.

Table 17. Parameters page parameters for ReSpect deconvolution (Sheet 5 of 7)

Parameter	Description
Baseline Correction	Displays parameters that identify and remove a baseline from the spectrum. They perform three functions on a RAW data file:
	 Remove unwanted positive intensity that is not part of the useful signals.
	 Compute the noise compensation, which can improve the separation of noise from signals in subsequent processing.
	• Compute noise estimates for the noise-compensated data.
	The Protein Deconvolution application applies these parameters before performing any other processing operations. It must perform these functions on raw, unfiltered data.
Peak Width	Specifies the half-height width of a typical peak, in data intervals. This value does not need to be exact. The default is 0, which causes the ReSpect algorithm to calculate a peak width automatically.
	Default: 0
Feature Width	Specifies how wide the feature of the baseline should be, in data points. The default is 0, which causes the ReSpect algorithm to calculate a feature width automatically.
	Default: 0
Degree of Fit	Specifies the offset by which to lower or raise the baseline height. This adjustment is non-linear so that its effect is proportional to the underlying noise amplitude. Set Degree of Fit to 0 for automatic computation. Set Degree of Fit to 1 for manual computation.
	Range: 0.0–2.0
	Default: 0
	Values less than 1 lower the computed baseline, and values greater than 1 raise it.

Table 17. Parameters page parameters for ReSpect deconvolution (Sheet 6 of 7)

Parameter	Description
Deconvolution Parameters	Displays parameters that control the operation of the deconvolution itself.
Number of Iterations	Specifies how far the deconvolution is to proceed.
	• 0: Use when a crude deconvolution is sufficient. Use only for data with a large variation in peak width or where speed is important.
	• 1: Use where there is a substantial change in peak width across the data to be processed.
	• 2: Use if there is a significant change in peak width across the data or where it is not possible to accurately model the peak profile.
	• (Default) 3: Use when a high-quality deconvolution is required, and there is only a small change in peak width across the region to be processed.
	• 4: Use when extreme deconvolutions are required. This value is only relevant for good signal-to-noise data where there is only a very small change in peak width across the region to be processed. The designed model must also be a good fit to the peak profiles.
	You can use non-integer values. Negative values indicate an absolute number of iterations to perform.
	Decreasing the value for this parameter reduces the computation time. Starting at 0, the computation time roughly doubles for each integer increase.
Noise Compensation	Determines whether the ReSpect algorithm improves signal detection where the noise level varies across the data.
	• (Default) Selected: Improves signal detection where the noise level varies across the data.
	• Unselected: Does not improve signal detection where the noise level varies across the data.

Thermo Scientific Protein Deconvolution User Guide Protein Deconvolution User Guide

Table 17. Parameters page parameters for ReSpect deconvolution (Sheet 7 of 7)

Parameter	Description
Minimum Adjacent Charges	Specifies the minimum number of peaks in a row that must appear at the lower and the upper end of the spectrum if the ReSpect algorithm is to recognize a component as real. The ReSpect algorithm rejects potential components with fewer than this number of adjacent peaks.
	Minimum values: 1 and 1
	Maximum values: None
	Default values: 6 and 10
Peak Model Parameters	Displays parameters that place restrictions on the width and shape that a peak must have to be associated with a compound.
Number of Peak Models	Controls the resolution of the peak modeling process by dividing the observed m/z range into a uniformly spaced set of regions equal to this number. The Protein Deconvolution application generates a single peak model for each of these regions on the basis of the observed m/z value and instrument resolution at the midpoint of each region.
	Default: 1
Resolution @ 400	Defines the resolution at mass 400. This parameter is read-only.
Left/Right Peak Shape	Defines the sharpness of a peak.
	Default for both the left and the right peak shape: 2

Selecting the Spectrum to Deconvolve

When you click Save Method or Save Method As after you have set the parameters on the Parameters page or when you load an existing parameter set and click Load Method in the Method Selection page, the Protein Deconvolution application automatically transfers you to the Chromatogram page, shown in Figure 41. Use the Chromatogram page to select the best possible spectrum for the target protein for deconvolution.

❖ To select the spectrum to deconvolve

1. Click the **Chromatogram** tab, if it is not already selected.

Figure 41 shows the Chromatogram page.

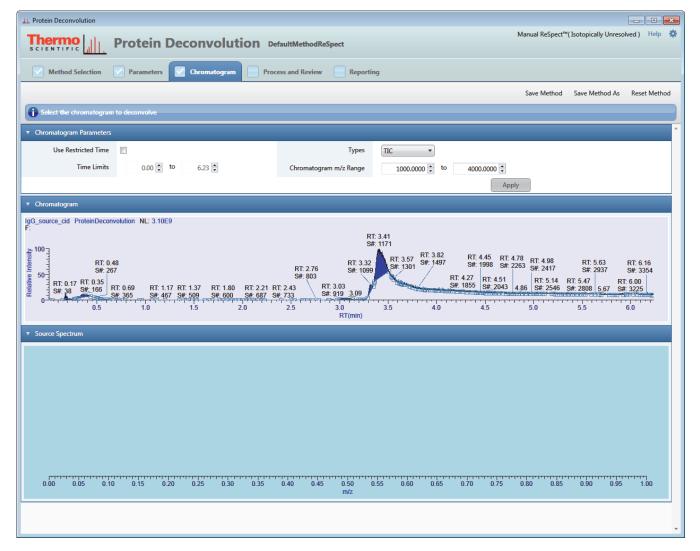


Figure 41. Chromatogram page for ReSpect deconvolution

The Chromatogram page displays three panes:

- Chromatogram Parameters: Contains parameters that you can use to adjust the view in the Chromatogram pane.
- Chromatogram: Displays a chromatogram of the data in the RAW file. A chromatogram view shows the intensities of one or more masses as a function of time. By default, the Chromatogram pane displays a TIC chromatogram, as shown in Figure 41. The chromatogram is fully magnified. You can use the zooming and averaging functions in this pane to generate a spectrum (for instructions, see step 4).
- Source Spectrum: Displays the spectrum to deconvolve, either single-scan or averaged, that you selected in the Chromatogram pane. The mass spectrum in this pane is empty until you select a region in the chromatogram.

- 2. (Optional) Use the parameters in the Chromatogram Parameters pane to adjust the chromatogram displayed in the Chromatogram pane.
 - Use Restricted Time: Determines whether Protein Deconvolution application zooms the part of the chromatogram that you designate with the Time Limits parameters.
 - Selected: Zooms the designated part of the chromatogram.
 - (Default) Unselected: Displays the entire chromatogram.
 - Time Limits: Specifies the beginning and the end of the chromatogram that you want to zoom.

The default is 0.00 for both limits.

This parameter is only available when you select the Use Restricted Time check box.

- Types: Specifies the type of chromatogram to display in the Chromatogram pane:
 - (Default) TIC: Displays a total ion current chromatogram.
 - BPC: Displays a base peak chromatogram. The base peak is the largest peak in a spectrum.

For information on these types of chromatograms, see Table 18 on page 73.

• Chromatogram m/z Range: Specifies the range of mass-to-charge (*m/z*) values used as input to the chromatogram. The ReSpect algorithm ignores the portions of the spectrum outside this range.

The default is 0.0000 for both limits.

3. If you want to return the parameters in the Chromatogram Parameters pane to their original default settings, click **Reset Method**; otherwise, click **Apply**.

If you change any parameters in this pane but do not click Apply and then click another tab, the message box shown in Figure 39 on page 57 appears. Click **Yes** to apply the parameter changes or **No** to restore the parameter defaults.

- 4. (Optional) Adjust the view in the Chromatogram pane.
 - To enlarge the view to see more detail, do one of the following:
 - Right-click and choose **Mode > Auto Zooming** from the shortcut menu if it is not already selected, and drag the red cross-shaped cursor over the peak or peaks of interest to form a box, as shown in Figure 42.

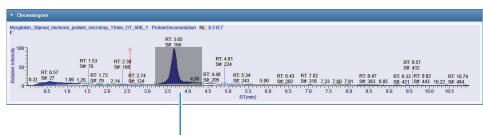
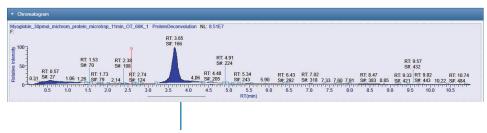



Figure 42. Enlarging an area by drawing a box around the peaks of interest

Draw a box around the peaks of interest.

 Keeping the left mouse button pressed, draw a line beneath the baseline of the peaks of interest, as shown in Figure 43.

Figure 43. Enlarging an area by drawing a line beneath the baseline of the peaks of interest

Draw a line under the baseline of the peaks of interest.

 Right-click and choose **Zoom In** from the shortcut menu to zoom the entire chromatogram.

If there is no obvious chromatographic peak, change the limits of the m/z Range parameter in the Parameters pane to find it.

- To shrink the view of the entire spectrum, right-click and choose **Zoom Out**.
- To reset the view to the original spectrum, right-click and choose **Reset Scale**.
- 5. Create a spectrum in the Source Spectrum pane by doing one of the following:
 - In the Chromatogram pane, place the red cross-shaped cursor on the chromatogram to select a single scan and to display the associated mass spectrum at that time point, as shown in Figure 16 on page 25. You can use the left and right arrow keys to move to the previous or next time point in the chromatogram. The spectrum window automatically updates.

-or-

- Select a region of the chromatogram to display an averaged spectrum for all the scans in the selected region in the Source Spectrum pane:
 - i. Right-click and choose **Mode > Averaging**.
 - ii. Drag the red cross-shaped cursor across the area of interest, as shown in Figure 44.

3 Deconvolving Isotopically Unresolved Mass Spectra with the ReSpect Algorithm

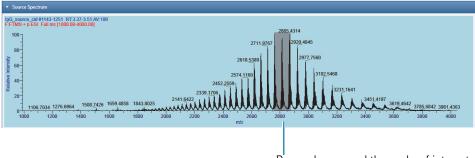
Selecting the Spectrum to Deconvolve


The horizontal line of this cursor aids in assessing peak height. The Protein Deconvolution application calculates an average spectrum for this interval.

The averaging method is better suited to complex data than the single-scan method. It is recommended for ReSpect deconvolution.

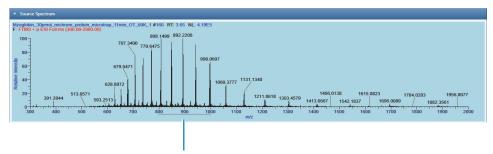
Tip (Optional) You can perform step 1 through step 5 in Qual Browser in the Xcalibur data system, and then right-click and choose **Export > Write to RAW File** so that you can import the file into the Protein Deconvolution application.

The spectrum appears in the Source Spectrum pane of the Chromatogram page, as shown in Figure 44.


Figure 44. Spectrum in the Source Spectrum pane of the Chromatogram page for ReSpect deconvolution

The Source Spectrum pane shows the actual spectrum, either single-scan or averaged, to be deconvolved. This spectrum also appears in the Process and Review pane for deconvolution. The ReSpect algorithm can deconvolve only profile spectra.

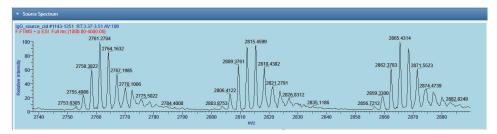
- Centroid data represents mass spectral peaks in terms of two parameters: the centroid (the weighted center of the mass) and the intensity (the normalized area of the peak). The data is displayed as a bar graph.
- Profile data represents the entire spectrum as a succession of points in *m*/*z* and intensity. The data is displayed as a line.
- 6. (Optional) Adjust the view in the Source Spectrum pane if necessary.
 - To enlarge the view to see more detail, do one of the following:
 - Drag the red cross-shaped cursor over the peak or peaks of interest to form a box, as shown in Figure 45.


Figure 45. Enlarging an area by drawing a box around the peaks of interest

Draw a box around the peaks of interest.

 Keeping the left mouse button pressed, draw a line beneath the baseline of the peaks of interest, as shown in Figure 46.

Figure 46. Enlarging an area by drawing a line beneath the baseline of the peaks of interest



Draw a line under the baseline of the peaks of interest.

Right-click and choose **Zoom In** to enlarge the view of the entire spectrum.

Figure 47 gives an example of the enlarged peaks.

Figure 47. Enlarged peaks in the Source Spectrum for ReSpect deconvolution

- To shrink the view of the entire spectrum, right-click and choose **Zoom Out**.
- To reset the view to the original spectrum, right-click and choose **Reset Scale**.

Unlike adjustments in the Chromatogram pane, which you use to select a spectrum for processing, adjustments in the Source Spectrum pane do not affect the spectrum that the Protein Deconvolution application deconvolves. In particular, they do not change the *m/z* range that the deconvolution algorithm uses.

7. When the spectrum is suitable for ReSpect processing, click the **Process and Review** tab, and follow the instructions in "Deconvolving the Spectrum" on page 76.

Obtaining the Best Results with the ReSpect Algorithm

Low, outlying peaks in the source spectrum are less accurate than high peaks and fade into noise. Follow these suggestions to increase the stringency of the deconvolution, decrease noise, and produce better results:

- Use the most abundant peaks in the distribution for deconvolution.
- Narrow the mass-to-charge (m/z) range as much as possible.
- In the Main Parameters (ReSpect) pane of the Process and Review page or the Parameters page, adjust the values of the Output Mass Range parameter. Harmonics (overtones) are an artifact of FTMS detectors. They are normal in a distribution, but you can avoid them by narrowing the range to the area around the target mass.
- In the Main Parameters (ReSpect) pane of the Process and Review page or the Parameters page, set the Mass Tolerance parameter to a lower value, in daltons, to make the output results cleaner. When you decrease this value, the delta mass value for each charge state also drops.
- In the Advanced Parameters (ReSpect) pane of the Parameters page, raise the values of the Minimum Adjacent Charges parameter.

Chromatogram Page Parameters

Table 18 lists the parameters that are available on the Chromatogram page for ReSpect deconvolutions.

Table 18. Chromatogram page parameters for ReSpect deconvolution (Sheet 1 of 3)

Parameter	Description
Chromatogram Parameters pane	Displays the parameters that govern the appearance of the chromatogram in the Chromatogram pane.
Use Restricted Time	Determines whether the Protein Deconvolution application zooms the part of the chromatogram that you define with the Time Limits parameters.
	• Selected: Zooms the specified part of the chromatogram.
	• (Default) Unselected: Displays the entire chromatogram.
Time Limits	Specifies the beginning and the end of the chromatogram that you want to zoom.
	The default values for both limits depend on the data in the RAW file.
	This parameter is only available when you select the Use Restricted Time parameter.

Table 18. Chromatogram page parameters for ReSpect deconvolution (Sheet 2 of 3)

Parameter	Description
Types	Determines the type of chromatogram displayed in the Chromatogram pane:
	• (Default) TIC: Displays a total ion current chromatogram, which shows the summed intensity across the entire range of masses being detected at every point in the analysis. The range is typically several hundred mass-to-charge units or more. In complex samples, the TIC chromatogram often provides limited information as multiple analytes elute simultaneously, obscuring individual species.
	A TIC in combination with a narrow m/z range is effectively an extracted ion chromatogram (XIC).
	 BPC: Displays a base peak chromatogram, which shows only the most intense peak in each spectrum. This means that the base peak chromatogram represents the intensity of the most intense peak at every point in the analysis. Base peak chromatograms often have a cleaner look and are therefore more informative than TIC chromatograms because the background is reduced by focusing on a single analyte at every point.
	For intact protein spectra, the TIC often looks better. The BPC is usually best for smaller molecules where all of the signal exists in a single charge state.
Chromatogram m/z Range	Specifies the range of mass-to-charge (m/z) values used as input to the chromatogram. The ReSpect algorithm ignores the portions of the spectrum outside this range.
	The default values for both limits depend on the data in the RAW file.
Apply	Implements the parameter settings that you selected. This button is only available if you have changed any parameter settings in the Chromatogram Parameters pane.
Chromatogram pane	Displays the chromatogram contained in the RAW file.
Relative Intensity (y axis)	Displays the ratio of the intensity of a specific peak to the intensity of the peak with the highest intensity.
RT (min) (x axis)	Displays the retention time of the spectrum, which is the time after injection at which a compound elutes. Retention time can also refer to the total time that the compound is retained on the chromatograph column.

Table 18. Chromatogram page parameters for ReSpect deconvolution (Sheet 3 of 3)

Parameter	Description
Source Spectrum pane	Displays the spectrum that you selected.
Relative Intensity (y axis)	Displays the ratio of the intensity of a specific peak to the intensity of the peak with the highest intensity.
m/z (x axis)	Displays the mass-to-charge ratio of ions formed from molecules. This ratio is the quantity formed by dividing the mass of an ion, in daltons, by the number of charges carried by the ion.

Chromatogram Pane Shortcut Menu

When you right-click in the Chromatogram pane, a shortcut menu appears that contains the commands listed in Table 19.

Table 19. Chromatogram page shortcut menu

Parameter	Description
Mode	Determines whether dragging the cursor zooms or selects a range of scans to average.
	 Averaging: Averages the spectra for all the scans in the region that you drag the cursor over in the Chromatogram pane and displays them in the Source Spectrum pane.
	• (Default) Auto Zooming: Enlarges the area that you drag the cursor over in the Chromatogram pane without changing the view displayed in the Source Spectrum pane.
Scale	Restores the original chromatogram that first appeared in the Chromatogram pane.
Сору	Copies the view in the Chromatogram pane.
Zoom Out	Shrinks the view in the Chromatogram pane two times.
Zoom In	Enlarges the view in the Chromatogram pane two times.

Chromatogram Pane Header

The header in the Chromatogram pane displays the following information. The example values come from Figure 44 on page 70.

- The name of the RAW file, for example, IgG_source_cid
- The name of the product, Protein Deconvolution

- NL: The the intensity of the most abundant peak in the entire LC/MS run, for example, 3.10E9
- F: The scan filter used during the LC/MS run. The scan filter indicates the type of mass analyzer used to acquire the data in the raw data file and the ionization technique used. If this field is blank, no scan filter was used.

Source Spectrum Pane Shortcut Menu

When you right-click in the Source Spectrum pane, a shortcut menu appears that contains all of the commands in Table 19 except Mode, but they apply to the Source Spectrum pane rather than the Chromatogram pane. For information on these commands, see Table 19 on page 75.

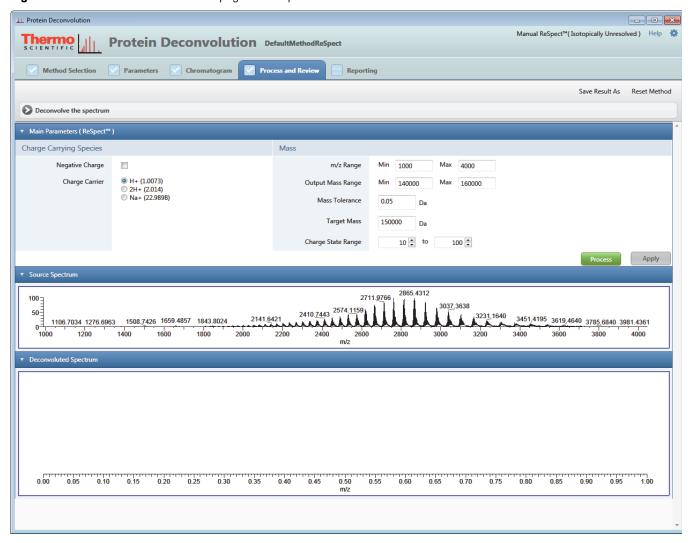
Source Spectrum Pane Header

The header in the Source Spectrum pane displays the following information. The example values come from Figure 44 on page 70.

- Name of the RAW file, for example, IgG_source_cid
- Scan number or range of scan numbers, for example, #1138 –1290
- RT: Retention time, which is the time in the mass chromatogram when any particular precursor ion is observed, for example, 3.37 3.52
- AV: The number of samples, for example, 123. AV does not appear when you use the default Auto Zooming mode in the ReSpect algorithm.
- F: The scan filter used during the LC/MS run, for example, FTMS + p ESI Full ms [1000.00–4000.00]. The scan filter indicates the type of mass analyzer used to acquire the data in the raw data file and the ionization technique used. If this field is blank, no scan filter was used.

Deconvolving the Spectrum

When you arrive at the Process and Review page, shown in Figure 48, you have already selected the chromatogram and source spectrum on the Chromatogram page. You can zoom in and out of these views, but you cannot change them on the Process and Review page. You must manually navigate back to the Chromatogram pane to change these views.


Use the Process and Review page to deconvolve the selected spectrum and to view the resulting data to ensure that the results make sense. You can also export the data into an Excel file for use in other applications.

❖ To deconvolve the spectrum

1. If you are not already on the Process and Review page, click the **Process and Review** tab.

Figure 48 shows the initial Process and Review page.

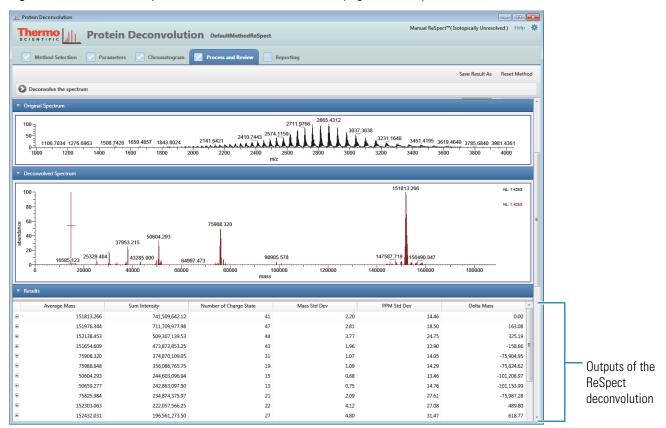
Figure 48. Initial Process and Review page for ReSpect deconvolution

The initial Process and Review page displays three panes:

- Main Parameters (ReSpect): Displays the same parameters as those in the Main Parameters (ReSpect) pane on the Parameters page so that you can adjust them.
- Source Spectrum: Displays the spectrum that you selected in the Source Spectrum pane of the Chromatogram page.
- Deconvolved Spectrum: Displays the deconvolved spectrum resulting from applying the ReSpect algorithm.

3 Deconvolving Isotopically Unresolved Mass Spectra with the ReSpect Algorithm

Deconvolving the Spectrum


- 2. (Optional) Adjust any parameters in the Main Parameters (ReSpect) pane. For information on these parameters, see Table 17 on page 60.
- 3. Click **Process** in the Main Parameters (ReSpect) pane.

The ReSpect algorithm finishes processing, producing a deconvolved spectrum and a list of the components that it detected.

The Protein Deconvolution application displays the output spectrum in the Deconvolved Spectrum pane as a profile in mass and intensity along with a set of peak labels. It displays the component list in the Results pane as a table of masses, intensities, charge state information, and mass shifts. You can expand each entry in this table to display detailed information about the individual charge states that the entry contains.

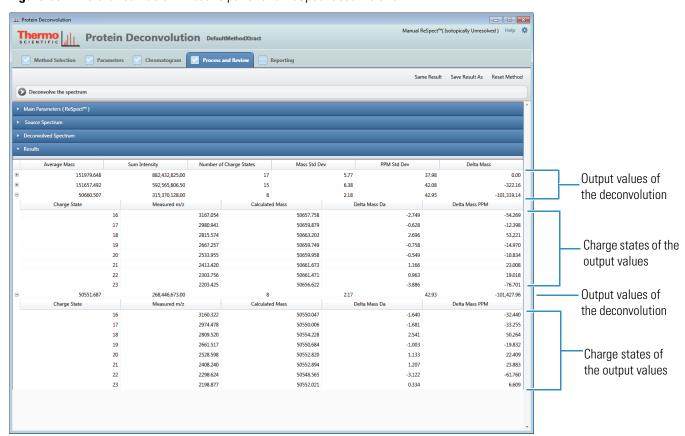

As shown in Figure 49, the values in the Average Mass, Sum Intensity, Number of Charge States, Mass Std Dev, PPM Std Dev, and Delta Mass columns represent the outputs of the deconvolution. Each peak in the Results table is composed of charge-state peaks. Each charge-state peak in the original spectrum provides evidence for the peak in the deconvolved spectrum.

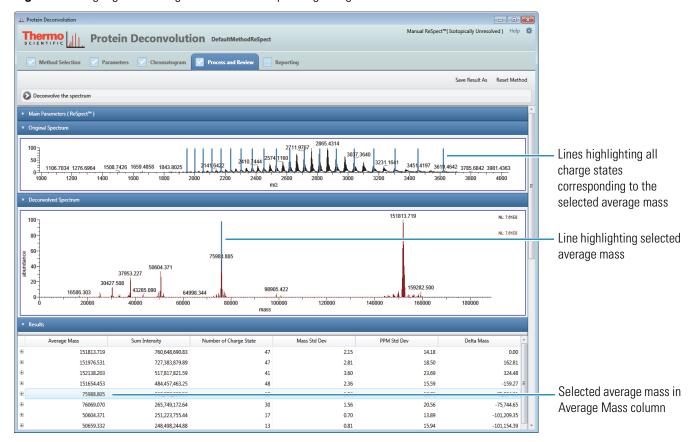
Figure 49. Deconvolved spectrum on the Process and Review page for a ReSpect deconvolution

You can sort the data in each column of the peak table from lowest to highest or highest to lowest by clicking the column header. For example, click the Number of Charge States column header. The Protein Deconvolution application, which initially displays the number of charge states in this column in order from lowest to highest, now displays the number of charge states from highest to lowest. Click again to display the numbers from lowest to highest.

Click the plus sign (+) to the far left of a row in the peak table. As shown in Figure 50, five new columns appear: Charge State, Measured m/z, Calculated Mass, Delta Mass Da, and Delta Mass PPM. These values represent the charge-state peaks that constitute the peaks shown in the five output columns.

Figure 50. Hierarchical table in Results pane for a ReSpect deconvolution

In addition, the peak table includes the following features:


- The Charge State column lists the individual charge states.
- The Average Mass column displays the calculated mass of a molecule based on the average atomic weight of each element. When you click on a value in this column, the application automatically highlights the corresponding mass in the Deconvolved Spectrum pane with a blue line, as shown in Figure 51. You might have to zoom in to see the highlighted line; for instructions, see "Selecting the Spectrum to Deconvolve" on page 21.

3 Deconvolving Isotopically Unresolved Mass Spectra with the ReSpect Algorithm

Deconvolving the Spectrum

In the Source Spectrum pane, the application highlights all the charge states corresponding to the selected average mass, as shown in Figure 51.

Figure 51. Highlighted average mass and corresponding charge states

• When you click on one of the charge states in the Charge State column, the application highlights the corresponding calculated mass in the Deconvolved Spectrum pane, as shown in Figure 52. In the Source Spectrum pane, it highlights the corresponding value of the Measured m/z column.

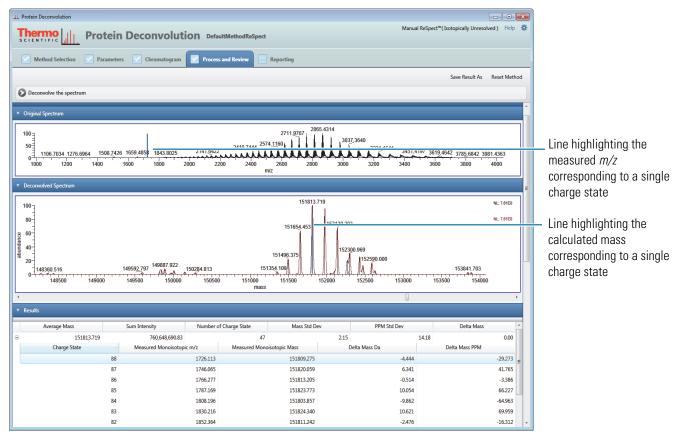


Figure 52. Highlighted values corresponding to individual charge state

For information on the columns in the Results table, see Table 20 on page 83.

❖ To adjust the ReSpect deconvolution results

- 1. If you are not satisfied with the deconvolution results, do the following:
 - Adjust the parameters in the Main Parameters (Xtract) pane on either the Process and Review page or the Parameters page, and click **Apply**.

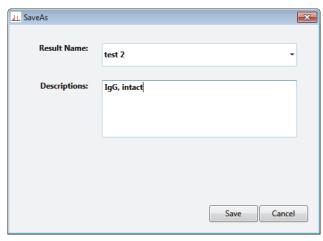
-or-

- Return to the Parameters page, adjust the parameters in the Advanced Parameters (Xtract) pane, and click **Apply**.
- 2. When you finish adjusting the parameters, click **Process** on the Process and Review page again.

"Obtaining the Best Results with the ReSpect Algorithm" on page 72 offers some suggestions for obtaining better results when you use the ReSpect algorithm.

If you are satisfied with the results, you can save them by using the following procedure.

3 Deconvolving Isotopically Unresolved Mass Spectra with the ReSpect Algorithm


Deconvolving the Spectrum

❖ To save the results of the deconvolution

- 1. Click Save Result As.
- 1. In the SaveAs dialog box, do the following:
 - a. In the Result Name box, type the name of the results file.
 - b. In the Description box, type a brief description of the results.

The dialog box should resemble that shown in Figure 53.

Figure 53. SaveAs dialog box

c. Click Save.

The Protein Deconvolution application saves the results of the deconvolution in a file with an .sqlite suffix in the same directory where you stored the RAW files.

You can also copy and paste any one of the views in this window to a PowerPoint presentation file.

2. If you want to analyze another averaged spectrum from the same LC/MS data file, navigate back to the Chromatogram pane and follow the instructions in "Selecting the Spectrum to Deconvolve" on page 21.

* To export the results of the deconvolution

- 1. Double-right-click anywhere in the Results pane.
- 2. Choose **Export**.
- 3. In the Save As dialog box, browse to or type the name of the file to store the results in.
- 4. Click Save.

The Protein Deconvolution application stores the data in the Results pane in an Excel file with an .xls suffix.

Process and Review Page Parameters for the ReSpect Algorithm

The Process and Review page displays parameters that you can set for the protein deconvolution, the source spectrum, the deconvolved spectrum, and a table showing the results of the deconvolution.

Table 20 describes the types of information available on the Process and Review page for ReSpect deconvolutions.

Table 20. Process and Review page information for ReSpect deconvolution (Sheet 1 of 2)

Parameter	Description
Main Parameters (ReSpect) pane	The parameters in the Main Parameters (ReSpect) pane are the same as those in the Main Parameters (ReSpect) pane of the Parameters page. For information on the parameters on this page, see Table 17 on page 60.
Process	Deconvolves the spectrum with the specified algorithm.
Apply	Implements the parameter settings that you selected.
Source Spectrum pane	Displays the selected spectrum before deconvolution.
m/z (x axis)	Displays the mass-to-charge ratio of ions formed from molecules. This ratio is the quantity formed by dividing the mass of an ion, in daltons, by the number of charges carried by the ion.
Deconvolved Spectrum pane	Displays the deconvolved spectrum.
Abundance (y axis)	Displays the peak height.
Mass (x axis)	Displays the actual mass of an ion in atomic mass units.
Results pane	Displays the masses and intensities of the peaks that the ReSpect algorithm detected during the deconvolution, along with their quality scores.
Average Mass	Displays the calculated mass of a molecule based on the average atomic weight of each element.
Sum Intensity	Displays the sum of the intensities of the peaks for a charge state.
Number of Charge States	Displays the number of component in the list.
Mass Std Dev	Displays the standard deviation, in daltons, of the delta masses for all the charge states of a component (for example, the standard deviation of Delta Mass Da).
PPM Std Dev	Displays the standard deviation, in parts per million, of the delta masses for all the charge states of a component (for example, the standard deviation of Delta Mass PPM).

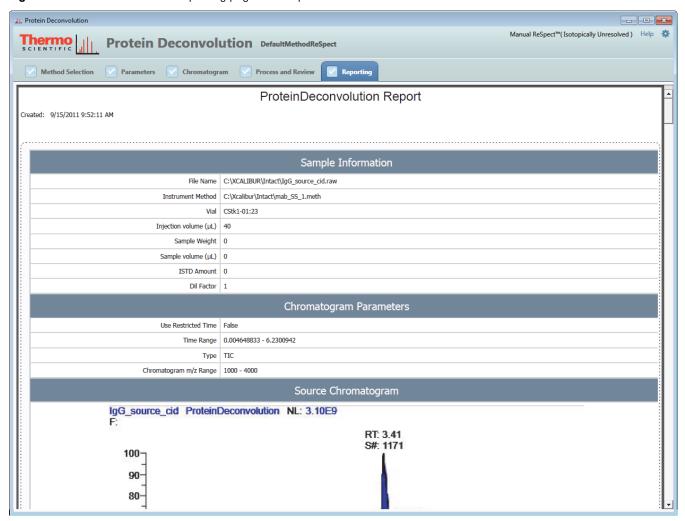
Table 20. Process and Review page information for ReSpect deconvolution (Sheet 2 of 2)

Parameter	Description
Delta Mass	Displays the difference between the mass of a specific compound and the mass of the highest-intensity compound.
Charge State	Displays the imbalance between the number of protons (in the nuclei of the atoms) and the number of electrons that a molecular species (or adduct ion) possesses. If the species possesses more protons than electrons, its charge state is positive. If it possesses more electrons than protons, its charge state is negative.
Measured m/z	Displays the mass-to-charge ratio of the peak in the source spectrum.
Calculated Mass	Displays the mass calculated from the measured mass-to-charge ratio and the charge state. It represents the deconvolved mass for a particular charge state.
Delta Mass Da	Displays the difference between the average mass for a component and the calculated mass for that charge state, in daltons.
Delta Mass PPM	Displays the difference between the average mass for a component and the calculated mass for that charge state, in parts per million.

Displaying a Deconvolution Report

When you click Process on the Process and Review page, the Protein Deconvolution application generates a report displaying several aspects of the deconvolution so that you can track the progression of the data. You can view this report on the Reporting page. You can also save this report as a PDF file.

To display a report


• Click the **Reporting** tab when you have finished analyzing the data.

The Reporting page, partially shown in Figure 54, displays a summary of all results for a given data file. It contains the following sections:

- Sample Information Section
- Chromatogram Parameters Section
- Source Chromatogram Section
- Source Spectrum Section
- Main Parameters (ReSpect) Section

- Advanced Parameters (ReSpect) Section
- Deconvolved Spectrum Section
- ReSpect Masses Table Section
- Source Spectrum Evidence Section

Figure 54. Partial view of the Reporting page for ReSpect deconvolution

❖ To save the report in a PDF file

1. Move the cursor near the bottom of the screen.

The Reporting page toolbar shown in Figure 27 on page 42 appears.

2. Click the **Show Acrobat** icon, 🛴

The Adobe Acrobat toolbar appears at the top of the screen.

- 3. On the Adobe toolbar, click the **Save File** icon, \(\begin{align*}\begin{align*}\end{align*}\). The Save a Copy dialog box opens.
- 4. Specify the path and name of a PDF file to store the reports in, and click **Save**.

❖ To print a report

- 1. Hover the cursor near the bottom of the screen.
- 2. Click the **Print File** icon, , on the Reporting page toolbar shown in Figure 27 on page 42.
- 3. In the Print dialog box, set the appropriate printing parameters, and click **OK**.

Reporting Page Toolbar

For information about the icons on the Reporting page toolbar, see "Reporting Page Toolbar" on page 42.

Sample Information Section

The Sample Information section of the report, shown in Figure 55, displays information about the sample that the spectrum was taken from.

Figure 55. Sample Information section for ReSpect deconvolution

Sample Information	
File Name	C:\XCALIBUR\Intact\IgG_source_cid.raw
Instrument Method	C:\Xcalibur\Intact\mab_SS_1.meth
Vial	CStk1-01:23
Injection volume (μL)	40
Sample Weight	0
Sample volume (µL)	0
ISTD Amount	0
Dil Factor	1

Table 21 lists the parameters in the Sample Information section. All the parameters in this section are read-only.

Table 21. Sample Information section parameters for ReSpect deconvolution (Sheet 1 of 2)

Parameter	Description
File Name	Displays the name of the RAW file.
Instrument Method	Displays the name of the instrument method file.
Vial	Displays the position number of the sample in the autosampler.
Injection Volume (μL)	Displays the injection volume of the sample to be injected, in microliters.

Table 21. Sample Information section parameters for ReSpect deconvolution (Sheet 2 of 2)

Parameter	Description
Sample Weight	Displays the amount of a component in the sample.
Sample Volume (µL)	Displays the volume of a component in the sample.
ISTD Amount	Specifies the correction for the internal standard amount. If the value in this box is not 0.000, the value is used in an algorithm to correct for a case when any internal standard amounts specified in the active instrument method are correct, but when the amount of internal standard actually in one or more samples is different than the amount specified in the instrument method.
	This correction eliminates the necessity of remaking any samples to the internal standard concentrations or amounts specified in the instrument method and re-running the samples.
Dial Factor	Specifies the dilution factor that was used to prepare the sample.

Chromatogram Parameters Section

The Chromatogram Parameters section, shown in Figure 56, displays the settings that you chose in the Chromatogram Parameters pane of the Chromatogram page. For more information on these parameters, see Table 18 on page 73.

Figure 56. Chromatogram Parameters section for ReSpect deconvolution

Chromatogram Parameters		
Use Restricted Time	False	
Time Range	0.004648833 - 6.2300942	
Туре	пс	
Chromatogram m/z Range 1000 - 4000		

Source Chromatogram Section

The Source Chromatogram section, shown in Figure 57, displays the chromatogram contained in the RAW file. It is the same chromatogram that appears in the Chromatogram pane of the Chromatogram page.

Figure 57. Source Chromatogram section for ReSpect deconvolution

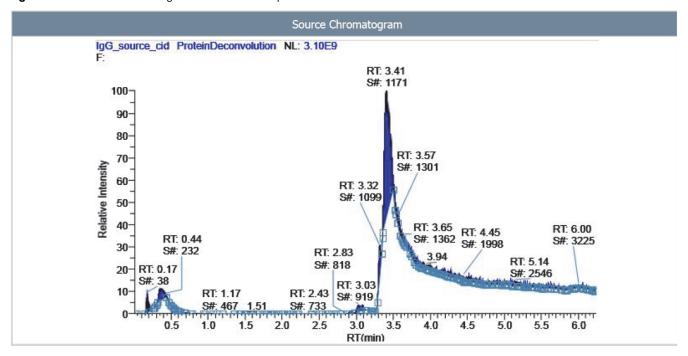


Table 22 lists the parameters in the Source Chromatogram section.

Table 22. Source Chromatogram section parameters for ReSpect deconvolution

Parameter	Description
Relative Intensity (y axis)	Displays the ratio of the intensity of a specific peak to the intensity of the peak with the highest intensity.
RT (min) (x axis)	Displays the retention time of the spectrum, which is the time after injection at which a compound elutes. Retention time can also refer to the total time that the compound is retained on the chromatograph column.

Source Spectrum Section

The Source Spectrum section, shown in Figure 58, displays the spectrum that you selected in the Source Spectrum pane of the Chromatogram page.

Figure 58. Source Spectrum section for ReSpect deconvolution

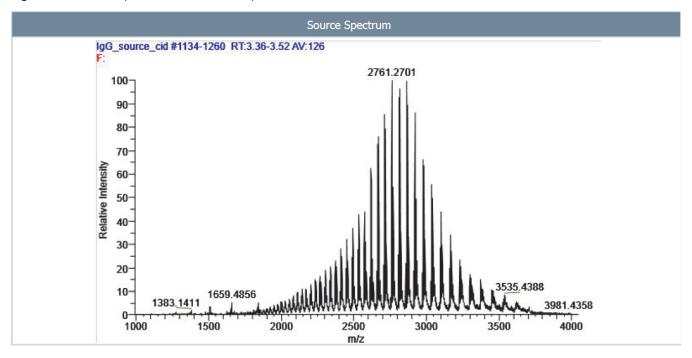


Table 23 lists the parameters in the Source Spectrum section.

Table 23. Source Spectrum section parameters for ReSpect deconvolution

Parameter	Description
Relative Intensity (y axis)	Displays the ratio of the intensity of a specific peak to the intensity of the peak with the highest intensity.
m/z (x axis)	Displays the mass-to-charge ratio of ions formed from molecules. This ratio is the quantity formed by dividing the mass of an ion, in daltons, by the number of charges carried by the ion.

Main Parameters (ReSpect) Section

The Main Parameters (ReSpect) section, shown in Figure 59, displays the parameter settings that you selected in the Main Parameters (ReSpect) pane of the Parameters page for the deconvolution. For information on these parameters, see Table 17 on page 60.

Figure 59. Main Parameters (ReSpect) section for ReSpect deconvolution

Main Parameters (ReSpect™)		
Negative Charge	False	
Charge Carrier	Н	
m/z Range	1000 - 4000	
Output Mass Range	10000 - 160000	
Mass Tolerance	0.05	
Target Mass	150000	
Charge State Range	10 - 100	

Advanced Parameters (ReSpect) Section

The Advanced Parameters (ReSpect) section, shown in Figure 59, displays the parameter settings that you selected in the Advanced Parameters (ReSpect) pane of the Parameters page for the deconvolution. For information on these parameters, see Table 17 on page 60.

Figure 60. Main Parameters (ReSpect) section for ReSpect deconvolution

Advanced Parameters (ReSpect ™)		
Minimum Peak Significance	1	
Noise Rejection	95% Confidence	
Use Relative Intensities	True	
Peak Width	0	
Feature Width	0	
Degree of Fit	0	
Number of Iterations	3	
Noise Compensation	True	
Minimum #. Adjacent Charges	6 - 10	
Number of Peak Models	10	
Resolution @ 400	12374	
Left/Right Peak Shape	1.5:1.5	

Deconvolved Spectrum Section

The Deconvolved Spectrum section, shown in Figure 61, displays the same information that appears in the Deconvolved Spectrum pane of the Process and Review page.

Figure 61. Deconvolved Spectrum section for ReSpect deconvolution

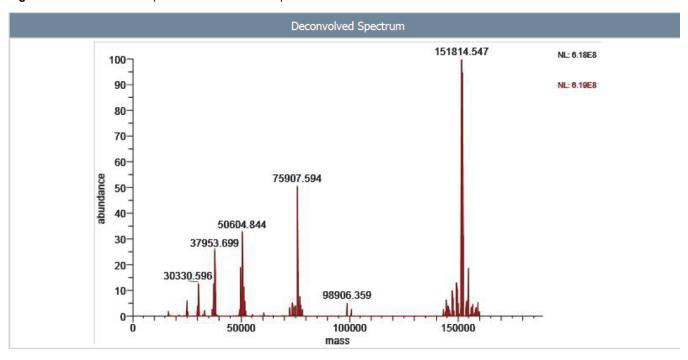


Table 24 lists the parameters in the Deconvolved Spectrum section.

Table 24. Deconvolved Spectrum section parameters for ReSpect deconvolution

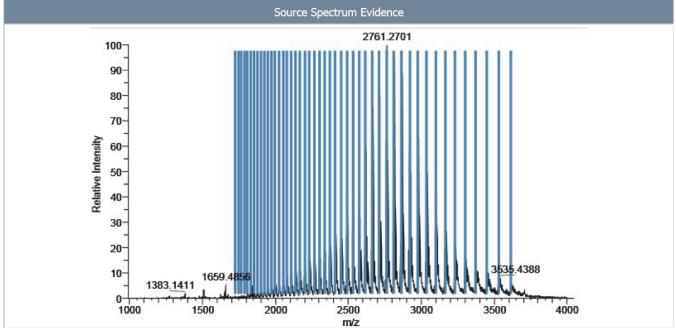
Parameter	Description	
Abundance (y axis)	Displays the peak height.	
Mass (x axis)	Displays the actual mass of an ion in atomic mass units.	

ReSpect Masses Table Section

The ReSpect Masses Table section, shown in Figure 62, displays the results of the deconvolution. It contains the same columns as those on the Results pane on the Process and Review page. For information on the columns in this table, see Table 20 on page 83.

Figure 62. ReSpect Masses Table section for ReSpect deconvolution

ReSpect Masses Table					
Average Mass	Sum Intensity	Number of Charge States	Mass Std Dev	PPM Std Dev	Delta Mass
151813.438	649078553.70	47	1.95	12.85	0.00
151976.641	623899549.77	46	2.48	16.34	163.20
152138.453	456451240.16	52	3.20	21.05	325.02
151654.313	417716261.19	43	1.98	13.08	-159.13
75907.242	328918554.69	29	0.98	12.97	-75906.20
75988.516	311666151.06	20	0.82	10.77	-75824.92
76069.406	229705768.72	30	1.42	18.71	-75744.03
50604.398	214522927.28	17	0.61	12.05	-101209.04
50658.773	213614767.36	19	0.93	18.30	-101154.66
75827.117	210266759.47	24	1.26	16.59	-75986.32
152302.531	202820202.38	26	4.24	27.86	489.09
152430.828	159574155.75	25	3.92	25.75	617.39
37994.117	159375169.88	10	0.65	17.01	-113819.32
152268.609	152164554.25	24	4.26	27.94	455.17
50712.938	149225282.45	16	1.07	21.03	-101100.50
151496.797	143887122.94	26	3.58	23.63	-316.64
152588.000	119998704.56	23	6.47	42.41	774.56
152469.016	100891944.38	20	6.37	41.78	655.58
37913.480	100307771.50	8	0.64	16.81	-113899.96
76133.164	83301385.13	17	2.67	35.03	-75680.27
30330.582	79337710.28	8	0.46	15.05	-121482.86
76213.711	74840094.94	15	2.41	31.68	-75599.73
75748.586	73572457.56	15	2.07	27.28	-76064.85
	-				


Source Spectrum Evidence Section

The Source Spectrum Evidence section, shown in Figure 63, displays a table and an accompanying graph for every scan in the sample. The table shows all the charge states that the Protein Deconvolution application detected. It displays the same parameters as those displayed in the Results pane on the Process and Review page. For information on these parameters, see Table 20 on page 83. The graph shows the peaks in the scan that are associated with a particular component.

The table in Figure 63 shows only a partial list of values.

Figure 63. Source Spectrum Evidence section for ReSpect deconvolution

Average Mass:151813.4375				
Charge	Measured m/z	Calculated Mass	Delta Mass Da	Delta Mass PPM
42	3615.632	151814.221	0.784	5.163
43	3531.824	151825.139	11.702	77.078
44	3451.433	151818.715	5.277	34.763
45	3374.662	151814.467	1.030	6.784
46	3301.375	151816.938	3.500	23.056
47	3231.144	151816.417	2.979	19.623
48	3163.862	151817.041	3.604	23.739
49	3099.340	151818.308	4.870	32.081
50	3037.324	151815.823	2.385	15.711
51	2977.776	151815.211	1.774	11.683
52	2920.538	151815.577	2.139	14.091
53	2865.456	151815.759	2.322	15.294
54	2812.402	151815.294	1.857	12.229
55	2761.287	151815.364	1.926	12.690
56	2711.979	151814.389	0.952	6.270
57	2664.419	151814.493	1.055	6.952
58	2618.514	151815.385	1.948	12.829
59	2574.135	151814.551	1.113	7.332
60	2531.271	151815.823	2.386	15.714
61	2489.797	151816.166	2.728	17.969
62	2449.640	151815.237	1.800	11.856
63	2410.742	151813.299	-0.138	-0.910
64	2373.122	151815.331	1.894	12.474
65	2336.593	151813.073	-0.364	-2.400

3 Deconvolving Isotopically Unresolved Mass Spectra with the ReSpect Algorithm

Loading Saved Results

Table 25 lists the parameters in the Source Spectrum Evidence section.

Table 25. Source Spectrum Evidence section parameters for ReSpect deconvolution

Parameter	Description
Relative intensity (y axis)	Displays the ratio of the intensity of a specific peak to the intensity of the peak with the highest intensity.
m/z (x axis)	Displays the mass-to-charge ratio.

Loading Saved Results

If you saved the results of a deconvolution, you can reload them at a later time.

❖ To load saved results

- 1. Click the **Method Selection** tab.
- 2. In the Experiment Types pane, click Load Previous Results.
- 3. In the Raw Data Directory of the Load Result File pane, type the path and name of the file containing the saved results or click the **Browse** button (...) to browse to the location of the file.
- 4. In the Select Result Files box, select the name of the .sqlite file containing the results, and click **Load**.

Index

A	Chromatogram page
About Protein Deconvolution dialog box vi	Chromatogram pane 22, 67
Abundance y axis label 38, 47, 83, 91	Chromatogram Parameters pane 22, 67
adduct ions 13–14, 18–19, 55, 60	parameters on 27, 73
Adobe Acrobat toolbar 41–42, 85	selecting spectrum to deconvolve 21, 66
Advanced Parameters (ReSpect) pane	Source Spectrum pane 22, 67
parameters on 57, 62	Chromatogram pane
purpose 54	adjusting the view 24, 68
Advanced Parameters (ReSpect) report section 90	creating spectrum in Source Spectrum pane 24
Advanced Parameters (Xtract) pane	header 30, 75 parameters on 28, 74
parameters on 15, 20	purpose 22, 67
purpose 12	shortcut menu 29,75
Advanced Parameters (Xtract) report section 46	Chromatogram Parameters pane
Auto Zooming mode 24, 68	parameters on 23, 27, 68, 73
Average Charge column 32, 39	purpose 22, 67
Average Mass column 78–79, 83	Chromatogram Parameters report section 44, 87
averagine isotope distribution 15, 20, 39	Consider Overlaps parameter 15, 20
Averaging mode 25, 69	contacting us viii
Tricinging mode 2), 0)	Copy command 29
В	17
	D
base peak chromatogram 23, 28, 68, 74	_
baseline correction 64	deconvolution
baseline subtraction 3	algorithms in Protein Deconvolution application 1 charge 3
C	description 1
	peak 3
Calculated Mass column 79, 84	results of 32, 78
Calculated Monoisotopic m/z column 33, 39	Deconvolved Spectrum pane
centroid data 26, 71	deconvolved spectrum in 32, 78
Charge Carrier parameter 14, 19, 55, 60	highlighting calculated mass 80
Charge column 33–34, 39	parameters on 38, 83
charge deconvolution 3	purpose 32, 77
Charge Normalized Intensity column 33, 39	Deconvolved Spectrum report section 47, 91
Charge Range parameter 16, 21	Degree of Fit parameter 58, 64
Charge State column 79-80, 84	deisotoping 2
Charge State Range parameter 56, 61	Delta Mass column 32, 78, 84
Chromatogram m/z Range parameter 23, 28, 68, 74	Delta Mass Da column 79, 84
	Delta Mass parameter 39
	Delta Mass PPM column 79, 84

deprotonation 55, 60	Load Raw Data File pane
deuterium 56, 60	parameters on 12, 53
Dil Factor column 43, 87	purpose 10, 52
documentation survey ix	
·	M
E	m/z Range parameter 14, 19, 56, 61
electrospray ionization (ESI) 1	m/z x axis label 29, 46, 49, 75, 89, 94
Exactive mass spectrometers 5, 14, 18	Main Parameters (ReSpect) pane
Excel files 37, 82	parameters on 55, 60, 83
exiting Protein Deconvolution application 7	purpose 54, 77
Expected Intensity Error parameter 16, 21	Main Parameters (ReSpect) report section 90
Experiment Types pane	Main Parameters (Xtract) pane
parameters on 11, 53	parameters on 13, 18, 38
purpose 9, 51	purpose 12, 32
purpose 7, 71	Main Parameters (Xtract) report section 46
-	Mass Std Dev column 78, 83
F	Mass Tolerance parameter 56, 61, 72
Feature Width parameter 58, 64	Mass x axis label 38, 47, 83, 91
FileName column 43, 86	Measured m/z column 79, 84
Fit column 36	Method Selection page
Fit Factor (%) parameter 15, 20	Experiment Types pane 9, 11, 51, 53
Fit% column 33, 39	Load Raw Data File pane 10, 12, 52-53
Fit% Left column 33, 39	Methods pane 10, 12, 52, 54
Fit% Right column 33, 39	parameters on 11,53
FTMS mass spectrometers 5, 14, 18	selecting algorithm, RAW file, and parameter set 9, 51
	Methods pane
G	parameters on 12, 54
	purpose 10, 52
Global Settings dialog box 6	Minimum Adjacent Charges parameter 58, 66, 72
Global Settings icon 6	Minimum Intensity parameter 16, 21
	Minimum Peak Significance parameter 57, 62
H	Mode command 29, 75
hydrogen 14, 19, 55, 60	monoisotopic mass 2, 13, 39
7 6	Monoisotopic Mass column 32
1	Monoisotopic Mass for This Charge column 33, 35, 39
1	Monoisotopic Mass parameter 38
Injection Volume (uL) column 43, 86	monoisotopic MH+ mass 13
inputs to Protein Deconvolution application 5	Mostabund m/z column 33-34, 39
Instrument Method column 43, 86	
isotopic clusters 15, 20, 32, 38	N
isotopically resolved mass spectra 1-2, 9	
isotopically unresolved mass spectra 1-2, 51	Negative Charge parameter 55, 60
ISTD Amount column 43, 87	Noise Compensation parameter 58, 65
	Noise Rejection parameter 57, 62
L	Number of Charge States column 32, 38, 78, 83
	Number of Iterations parameter 58, 65
Ligano Activation dialog box wii	Number of Peak Models parameter 59, 66
License Activation dialog box vii	
license for Protein Deconvolution application vi	

0	outputs 5
Orbitrap mass spectrometers 5, 14, 18	ReSpect algorithm 1–2
Output Mass parameter 13, 18	specifying default RAW file directory 6
Output Mass Range parameter 56, 61, 72	starting 5
outputs of Protein Deconvolution algorithm 5	workflow 3
output of Frotein Beconvolution algorithm	Xtract algorithm 1–2
P	Protein Deconvolution window 5
	protonation 55, 60
parameter sets	•
creating	Q
in ReSpect algorithm 53–54	Qual Browser 3, 25, 70
in Xtract algorithm 11, 13 deleting 17, 60	
existing 11, 53	R
loading 11, 53	DAW file directory
parameters available in Advanced Parameters (ReSpect)	RAW file directory 6
pane 57, 62	RAW files 9–10, 12, 52, 54
parameters available in Advanced Parameters (Xtract)	Relative Intensity y axis label
pane 15, 20	Chromatogram pane 28, 74
parameters available in Main Parameters (ReSpect) pane	Source Chromatogram report section 45, 88 Source Spectrum Evidence report section 49, 94
55, 60	Source Spectrum Pane 29
parameters available in Main Parameters (Xtract) pane	Relative Intensity y axis label
13, 18	Source Spectrum pane 75
saving 16–17, 59–60	
Parameters page	Relative Intensity <i>y</i> axis label Source Spectrum report section 46, 89
Advanced Parameters (ReSpect) pane 54, 57, 62	
Advanced Parameters (Xtract) pane 12, 15, 20	Remainder Threshold (%) parameter 15, 20
Main Parameters (ReSpect) pane 54-55, 60	Reporting page
Main Parameters (Xtract) pane 12–13, 18	Advanced Parameters (Xtract) section 46
setting parameters for ReSpect deconvolution 54	Chromatogram Parameters section 44, 87 Deconvolved Spectrum section 47, 91
setting parameters for Xtract deconvolution 12	displaying deconvolution report 40, 84
PDF files 40–41, 84–85	displaying deconvolution results 40, 84
peak deconvolution 3	Main Parameters (Xtract) section 46
Peak Width parameter 57, 64	Sample Information section 43, 86
potassium 14, 19	sections in 40, 84
PPM Std Dev column 83	Source Chromatogram section 44, 88
Print dialog box 42, 86	Source Spectrum Evidence section 48, 92
Print File icon 42, 86	Source Spectrum section 45, 89
Process and Review page	toolbar 42
Deconvolved Spectrum pane 32, 77	Xtract Masses Table section 47, 92
deconvolving the spectrum 31, 77	resetting parameters to defaults 15, 56, 59
Main Parameters (ReSpect) pane 77	Resolution @ 400 parameter 59, 66
Main Parameters (Xtract) pane 32	Resolution at 400 m/z parameter 14, 18
parameters on 38, 83	ReSpect algorithm
Source Spectrum pane 32, 77	adjusting deconvolution results 81
Process button 38, 83	creating a parameter set 54
profile data 26, 71	deconvolving the spectrum 77
Protein Deconvolution application	displaying reports 84
activating license vi	exporting results of deconvolution 82
exiting 7	loading saved deconvolution results 94
features 1	obtaining best results 72
inputs 5	profile spectra 71

purpose 1–2	I
results of deconvolution 78	Target Mass parameter 56, 61
saving results of deconvolution 82	Time Limits parameter 23, 27, 68, 73
selecting spectrum to deconvolve 66	total ion current chromatogram 23, 28, 68, 74
setting up protein deconvolution 51	Types parameter 23, 28, 68, 74
types of spectra to use 51	Types parameter 23, 26, 66, 74
ReSpect Masses Table report section 92	
Results pane	U
parameters on 38, 83	Use Relative Intensities parameter 57, 63
results of deconvolution in 32, 78	Use Restricted Time parameter 23, 27, 68, 73
retention time 28, 74	•
RT (min) <i>x</i> axis label 28, 45, 74, 88	V
	-
S	Vial column 43, 86
S/N Threshold parameter 14, 19	W
Sample Information report section 43, 86	workflow for Protein Deconvolution algorithm 3
Sample Volume (uL) column 43, 87	workflow for Frotein Deconvolution algorithm 3
Sample Weight column 43, 87	
Save a Copy dialog box 41–42, 86	X
Save a Copy icon 42	Xcalibur data system 3, 25, 70
Save dialog box 16, 59	Xtract algorithm
Save File icon 41, 86	adjusting deconvolution results 36
SaveAs dialog box 16, 37, 59, 82	centroid spectra 26
Scale command 29, 75	creating a parameter set 13
Show Acrobat icon 41-42, 85	deconvolving the spectrum 31
signal-to-noise threshold 14, 19, 63	displaying reports 40
sodium 14, 19, 56, 60	exporting results of deconvolution 37
Source Chromatogram report section 44, 88	loading saved deconvolution results 50
Source Spectrum Evidence report section 48, 92	printing a report 42, 86
Source Spectrum pane	profile spectra 26
adjusting the view 26, 71	purpose 1–2
creating spectrum in 24, 69	results of deconvolution 32
displaying selected spectrum 26, 71	saving a report in PDF file 41, 85
header 30, 76	saving results of deconvolution 37
highlighting charge states 80	selecting spectrum to deconvolve 21
highlighting most abundant isotope 34	setting up protein deconvolution 9
parameters on 29, 38, 75, 83	types of spectra to use 9
purpose 22, 32, 67, 77	Xtract Masses Table report section 47
shortcut menu 30, 76	
Source Spectrum report section 45, 89	Z
sqlite files	Zoom In command 29, 75
deleting from database 17	Zoom Out command 29, 75
loading previous results 50	Doom out command Di, /)
location of saved parameter sets 17, 60	
saving deconvolution results in 37	
starting Protein Deconvolution application 5	
Sum Intensity column 32, 38, 78, 83	
survey link ix	
-	