BAC (Bacterial Artificial Chromosome) Clone Collections

Version D
14 October 2008
25-0633

IMPORTANT!
Beginning in 2009, all Invitrogen clone manuals will only be available online at www.invitrogen.com
Table of Contents

Table of Contents .. iii
Contents and Storage .. v
Overview .. 1
Using BAC Clones ... 3
Cloning Site of pBeloBAC11 ... 4
Map of pBeloBAC11 ... 5
Technical Support ... 6
References .. 8
Contents and Storage

Types of Products

This manual is included with the following products. For more details on each BAC clone collection, see page 1.

<table>
<thead>
<tr>
<th>Product</th>
<th>Catalog no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CITB Human B & C BAC Clones</td>
<td>96012</td>
</tr>
<tr>
<td>CITB Human D BAC Clones</td>
<td>96012D</td>
</tr>
<tr>
<td>RPCI-11 Human BAC clones</td>
<td>RPCI-11.C</td>
</tr>
<tr>
<td>CITB Mouse BAC Clones</td>
<td>96022</td>
</tr>
<tr>
<td>RPCI-22 Mouse BAC Clones</td>
<td>RPCI-22.C</td>
</tr>
<tr>
<td>RPCI-23 Mouse BAC Clones</td>
<td>RPCI-23.C</td>
</tr>
</tbody>
</table>

Shipping and Storage

The BAC (Bacterial Artificial Chromosome) Clones are supplied as glycerol stocks and shipped on dry ice. Upon receipt, store at –80°C.

Contents

Each tube of BAC Clone contains genomic DNA cloned into an appropriate vector and transformed into GeneHogs® (also known as HS996) or DH10B™ E. coli (see page 1 for vector and host strain information). Each clone is supplied in 500 µl of LB media containing 8% glycerol and 12.5 µg/ml chloramphenicol.

Information for European Customers

These cells are genetically modified and contain the plasmid, pBeloBAC11 or pBACE3.6. As a condition of sale, this product must be in accordance with all applicable local legislation and guidelines including EC Directive 90/219/EEC on the contained use of genetically modified organisms.
Contents and Storage, Continued

Genotype of GeneHogs® E. coli
The genotype of GeneHogs® E. coli (also known as HS996) is:
\[F^{-} mcrA \Delta(\text{mrr-}hsd\text{RMS-}mcr\text{BC}) \phi 80lacZ\Delta M15 \ \Delta lacX74 \ \text{recA1} \]
\[\text{araD139} \ \Delta(\text{ara-leu})7697 \ \text{galU galK rpsL (Str}^{8}\text{)} \ \text{endA1 nupG} \]
\[\text{fhuA::IS2 (confers phage T1 resistance)} \]

Genotype of DH10B™ E. coli
The genotype of DH10B™ E. coli is:
\[F^{-} mcrA \Delta(\text{mrr-}hsd\text{RMS-}mcr\text{BC}) \phi 80lacZ\Delta M15 \ \Delta lac74 \ \text{recA1} \]
\[\text{araD139} \ \Delta(\text{ara-leu})7697 \ \text{galU galK rpsL (Str}^{8}\text{)} \ \text{endA1 nupG} \lambda_{-} \]

Additional Products
Additional products that may be used with BAC Clones are available separately from Invitrogen. Ordering information is provided below.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Catalog no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PureLink™ HiPure Plasmid Maxiprep Kit</td>
<td>10 preps</td>
<td>K2100-06</td>
</tr>
<tr>
<td></td>
<td>25 preps</td>
<td>K2100-07</td>
</tr>
<tr>
<td>PureLink™ HiPure BAC Buffer Kit</td>
<td>1 kit</td>
<td>K2100-18</td>
</tr>
</tbody>
</table>
Overview

BAC Clone Collection Overview

General information on each BAC (Bacterial Artificial Chromosome) clone collection is provided in this section. The table below provides an overview of the different BAC Clone Collections, source, coverage, and vector information.

<table>
<thead>
<tr>
<th>BAC Clone Collection</th>
<th>CITB Human B & C</th>
<th>CITB Human D1</th>
<th>CITB Human D2</th>
<th>RPCI-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CITB Human D1</td>
<td>Human sperm (195–768, 384-well plates)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CITB Human D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vector</td>
<td>pBeloBAC11</td>
<td>pBeloBAC11</td>
<td>pBeloBAC11</td>
<td>pBACe3.6</td>
</tr>
<tr>
<td>Average Insert Size</td>
<td>130 kb</td>
<td>129 kb</td>
<td>129–202 kb</td>
<td>174 kb</td>
</tr>
<tr>
<td>Host</td>
<td>GeneHogs® (HS996)</td>
<td>GeneHogs® (HS996)</td>
<td>GeneHogs® (HS996)</td>
<td>DH10B™</td>
</tr>
<tr>
<td>Coverage</td>
<td>15×</td>
<td>17×</td>
<td>17×</td>
<td>25×</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BAC Clone Collection</th>
<th>CITB Mouse</th>
<th>RPCI-22</th>
<th>RPCI-23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CITB Mouse</td>
<td>CJ7 ES cell line/129Sv (1–612, 384-well plates)</td>
<td>Female, mouse spleen (129/SvEvTACC/Br) (1–576, 384-well plates)</td>
<td>Female, mouse brain/kidney (C57BL/6J) (1–480, 384-well plates)</td>
</tr>
<tr>
<td>Vector</td>
<td>pBeloBAC11</td>
<td>pBACe3.6</td>
<td>pBACe3.6</td>
</tr>
<tr>
<td>Average Insert Size</td>
<td>130 kb</td>
<td>154 kb</td>
<td>197 kb</td>
</tr>
<tr>
<td>Host</td>
<td>GeneHogs® (HS996)</td>
<td>DH10B™</td>
<td>DH10B™</td>
</tr>
<tr>
<td>Coverage</td>
<td>8×</td>
<td>10.9×</td>
<td>11.2×</td>
</tr>
</tbody>
</table>
Overview, Continued

CITB

The CITB BAC Libraries were constructed through collaboration with Hiroaki Shizuya at the California Institute of Technology.

The DNA source used for constructing the library is listed on the previous page. The CITB Human B & C, CITB Human D1, and CITB Mouse libraries were constructed by cloning the DNA into the *Hind* III sites of pBeloBAC11 vector and transforming into GeneHogs® (HS996) *E.coli*. The CITB Human D2 library was cloned into the *EcoR* I site of pBeloBAC11 vector and transformed into GeneHogs® (HS996) *E.coli*. The library is arrayed into 384-well plates.

RPCI

The RPCI-11, 22, and 23 BAC Libraries were constructed in Pieter deJong’s lab at Children’s Hospital Oakland Research Institute (CHORI) by Kazytoyo Osoegawa and Minako Tateno.

The DNA source used for constructing the library is listed on the previous page. The DNA was cloned into the *EcoR* I sites of pBACe3.6 vector and transformed into DH10B™ *E.coli*. The library is arrayed into 384-well plates. For details on library construction, visit http://www.chori.org/bacBAC/home.htm

Vector Information

The BAC Clones are cloned into the following vectors:

- pBeloBAC11
 For vector map, see page 5. The complete sequence is available on our website at www.invitrogen.com
- pBACe3.6
 For vector map and sequence, visit http://www.chori.org/bacBAC/vectorsdet.htm
Using BAC Clones

Introduction

General guidelines for using the BAC Clones are described in this section.

Preparing Glycerol Stocks

We recommend you prepare a set of master stocks prior to using the BAC Clones. To prepare 5–10 glycerol master stocks for long-term storage:

1. Streak a small portion of the glycerol stock you received on a LB plate containing 12.5 μg/ml chloramphenicol.
2. Incubate the plate at 37°C overnight.
3. Isolate a single colony and inoculate into 5–10 ml of LB containing 12.5 μg/ml chloramphenicol.
4. Grow the culture to stationary phase (OD₆₀₀ = 1–2).
5. Mix 0.8 ml of culture with 0.2 ml of sterile glycerol and transfer to a cryovial.
6. Store at –80°C. Use one master stock to create working stocks for regular use.

BAC Plasmid Preparation

To isolate BAC plasmid DNA, you need to grow a culture of GeneHogs® or DH10B™ E. coli containing your clone. Use LB medium containing 12.5 μg/ml chloramphenicol to select single colonies or to grow a culture. Use a culture volume appropriate for the amount of plasmid needed for your plasmid isolation method of choice.

We recommend isolating BAC plasmid DNA using a resin based method, such as the PureLink™ HiPure Plasmid Maxiprep Kit (see page vi for ordering information). Other methods may also be suitable. For detailed instructions, refer to the literature provided with the product. Individual manuals are also available on our website at www.invitrogen.com or by contacting Technical Support (see page 6).

Sequencing or PCR of Clones

You may verify the clone by PCR, sequencing, or a method of choice using primers to T7 and Sp6 sites on the plasmid. The T7 and Sp6 priming sites flank the DNA cloning site for the BAC vectors, pBeloBAC11 and pBACE3.6. The cloning site of pBeloBAC11 is shown on the next page.
Using BAC Clones, Continued

The cloning site for pBeloBAC11 is shown below. Restriction sites are labeled to indicate the cleavage site. The inserts are cloned into the Hind III site, except for the CITB Human D2 library; the insert was cloned into the EcoR I site.

```
266 AGGGTTTTCG CAGTCACGAC GTTGTAAAC GACGGCCAGT
   T7 Promoter Primer

306 GAATTTGTAAT ACGACTCACT ATAGGGCGAA TTCGAGCTCG
   $\text{Kpn I } \to \text{Sma I } \to \text{BamH I } \to \text{Xba I } \to \text{Sal I } \to \text{Pst I } \to \text{Sph I } \to \text{Hind III}$

346 GTACCCCGGGG ATCCTCTAGA GTGACCTGC AGGCACTGCAA
   Sp6 Promoter Primer

386 GCTTGAGTAT TCTATAGTGT CACCTAATA GCTTGGCGTA

426 ATCATGGTCA TAGCTTGTTC CTGTGTGAAA TTGTATCCG
```
Map of pBeloBAC11

The figure below shows the features of pBeloBAC11 vector. The complete sequence of pBeloBAC11 is available for downloading from our website at www.invitrogen.com or by contacting Technical Support (see next page).
Technical Support

World Wide Web

Visit the Invitrogen website at www.invitrogen.com for:

- Technical resources, including manuals, vector maps and sequences, application notes, MSDSs, FAQs, formulations, citations, handbooks, etc.
- Complete technical support contact information
- Access to the Invitrogen Online Catalog
- Additional product information and special offers

Contact Us

For more information or technical assistance, call, write, fax, or email. Additional international offices are listed on our website (www.invitrogen.com).

Corporate Headquarters: Invitrogen Corporation
5791 Van Allen Way
Carlsbad, CA 92008 USA
Tel: 1 760 603 7200
Tel (Toll Free): 1 800 955 6288
Fax: 1 760 602 6500
E-mail: tech_support@invitrogen.com

Japanese Headquarters: Invitrogen Japan
LOOP-X Bldg. 6F
3-9-15, Kaigan Minato-ku,
Tokyo 108-0022
Tel: 81 3 5730 6509
Fax: 81 3 5730 6519
E-mail: jpinfo@invitrogen.com

European Headquarters: Invitrogen Ltd
Inchinnan Business Park
3 Fountain Drive
Paisley PA4 9RF, UK
Tel: 44 (0) 141 814 6100
Tech Fax: 44 (0) 141 814 6117
E-mail: eurotech@invitrogen.com

MSDS

Material Safety Data Sheets (MSDSs) are available on our website at www.invitrogen.com/msds.

Certificate of Analysis

The Certificate of Analysis (CofA) provides detailed quality control information for each product. The CofA is available on our website at www.invitrogen.com/support, and is searchable by product lot number, which is printed on each box.

Continued on next page
Invitrogen is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about an Invitrogen product or service, contact our Technical Support Representatives.

Invitrogen warrants that all of its products will perform according to specifications stated on the certificate of analysis. The company will replace, free of charge, any product that does not meet those specifications. This warranty limits Invitrogen Corporation’s liability only to the cost of the product. No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. Invitrogen reserves the right to select the method(s) used to analyze a product unless Invitrogen agrees to a specified method in writing prior to acceptance of the order.

Invitrogen makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore Invitrogen makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, please report it to our Technical Support Representatives.

Invitrogen assumes no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.
References

©2002-2008 Invitrogen Corporation. All rights reserved.
For research use only. Not intended for any animal or human therapeutic or diagnostic use