TaqMan® Gene Expression Cells-to-CT™ Kit

Catalog Numbers 4399002, AM1728, AM1729

Publication Number 4385117
Revision E
For Research Use Only. Not for use in diagnostic procedures.

The information in this guide is subject to change without notice.

DISCLAIMER

LIFE TECHNOLOGIES CORPORATION AND/OR ITS AFFILIATE(S) DISCLAIM ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. TO THE EXTENT ALLOWED BY LAW, IN NO EVENT SHALL LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF.

Limited Use Label License

Notice to Purchaser: For research purposes only. Diagnostic uses require a separate license from Roche.

The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners. TaqMan is a registered trademark of Roche Molecular Systems, Inc.; used under permission and license.

© 2012 Life Technologies Corporation. All rights reserved.
Contents

■ TaqMan® Gene Expression Cells-to-C\(_T\)™ Kit .. 5

Introduction ... 5
- Product description and background ... 5
- Procedure overview ... 5
- TaqMan® Cells-to-C\(_T\)™ Control Kit .. 6
- Applications .. 6
- Cell type compatibility ... 7
Workflow ... 8
- Kit contents and storage conditions .. 9
- TaqMan® Gene Expression Cells-to-C\(_T\)™ Kit procedure 9
 - Before you begin .. 9
 - Suggested controls and replicates 10
 - Perform cell lysis ... 10
 - Perform reverse transcription (RT) 12
 - Real-time PCR ... 13
Troubleshooting ... 15

■ APPENDIX A Pilot Experiment .. 19
- Procedure .. 19

■ APPENDIX B Materials Not Provided with the Kit 23
- Lab equipment and supplies .. 23
- Reverse transcription .. 23
- Real-time PCR .. 23
- Reagents ... 23
- Related products available from Life Technologies 24

■ APPENDIX C Safety .. 27
- Chemical safety .. 28

Documentation and Support ... 29
- Obtaining SDSs .. 29
- Obtaining support ... 29
- Limited product warranty .. 29
TaqMan® Gene Expression Cells-to-CT™ Kit

Introduction

IMPORTANT! Before using this product, read and understand the information the “Safety” appendix in this document.

Product description and background

Reverse transcription (RT)-PCR with real-time detection of amplification products is a robust, simple, and quantitative way to measure mRNA levels in biological samples. Traditionally, the first step in gene expression experiments has been to recover pure RNA from experimental samples. Even using the quickest and simplest techniques, however, RNA isolation is fairly time-consuming, often requiring 30 minutes or more of hands-on sample manipulation. Furthermore, with small samples, it can lead to loss of RNA. Cells-to-CT™ technology enables reverse transcription of lysates from 10–10^5 cultured cells without isolating or purifying RNA. Real-time PCR analysis is carried out directly afterwards. Eliminating the RNA isolation step substantially expedites and simplifies gene expression analysis of cultured cells.

Cells-to-CT™ lysates exhibit sensitivity and specificity similar to that from purified RNA in real-time RT-PCR using TaqMan® Gene Expression Assays. The lysis procedure simultaneously prepares cell lysates for RT-PCR and removes genomic DNA in under ten minutes. The lysis step is simple to automate with robotic platforms for high-throughput processing of 96- or 384-well plates because it takes place entirely at room temperature. The procedure is also economical; there are only a few pipetting steps and, with cells grown in 96- or 384-well plates, no sample transfers.

Procedure overview

The TaqMan® Gene Expression Cells-to-CT™ Kit procedure is shown in the “Workflow” on page 8 and described below.

- First, 10–10^5 cultured cells are washed with phosphate-buffered saline (PBS), mixed with Lysis Solution, and incubated at room temperature for 5 min. Cells are lysed during this incubation and RNA is released into the Lysis Solution which contains reagents to inactivate endogenous RNases. If DNase I is added to the Lysis Solution (optional), genomic DNA is also degraded at this step.
- Next, Stop Solution is mixed into the lysate to inactivate the lysis reagents so that they will not inhibit the RT or PCR.
- Cell lysates are reverse transcribed to synthesize cDNA using a convenient 20X RT Enzyme Mix and 2X RT Buffer.
- Finally, the cDNA is amplified by real-time PCR using the included TaqMan® Gene Expression Master Mix and the TaqMan® Gene Expression Assay for your target-of-interest (assays sold separately).
Figure 1 Real-time RT-PCR Using the TaqMan® Gene Expression Cells-to-CT™ Kit. A dilution series of 10–10^5 HeLa cells was processed in triplicate with the TaqMan® Gene Expression Cells-to-CT™ Kit. The endogenous control gene β-actin was amplified from the cDNA in triplicate 20 µL reactions. The inset shows amplification plots, and the main figure shows the threshold cycle (C_T) compared to the input number of cells. Amplification was linear over a cell input range of 10–10^5 cells per lysis.

TaqMan® Cells-to-CT™ Control Kit

The TaqMan® Cells-to-CT™ Control Kit (Cat. no. 4386995, available separately) is designed for use with the TaqMan® Gene Expression, TaqMan® PreAmp, and TaqMan® Fast Cells-to-CT™ Kits. It includes XenoRNA™ Control, an RNA transcript that has no homology to any known sequences, and a XenoRNA™ TaqMan® Gene Expression Assay to detect the XenoRNA™ Control target. It also includes a TaqMan® Assay for the highly expressed endogenous control gene, β-actin. These assays are designed to be run in parallel (not in multiplex PCR) with assay(s) for the gene(s)-of-interest, to serve as positive controls for RT and real-time PCR.

Applications

The TaqMan® Gene Expression Cells-to-CT™ Kit can be used in any application where real-time RT-PCR is used to analyze mRNA from cultured cells. It was developed using a process that included extensive testing for sensitivity and specificity with a broad selection of TaqMan® Gene Expression Assays. The kit is well suited for large experiments, such as real-time PCR analysis of gene expression in differentially treated cell cultures or RNAi screening experiments using siRNA to modulate gene expression. Other applications include screening a library of compounds for their effects on mRNA expression, following the regulation of mRNA as cells are treated with increasing concentrations of a particular chemical, or evaluating the expression of mRNA in time course experiments.
Cell type compatibility

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Growth</th>
<th>Source species</th>
<th>Source tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>A549</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Lung Carcinoma</td>
</tr>
<tr>
<td>BJ</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Foreskin fibroblast</td>
</tr>
<tr>
<td>CHO–K1</td>
<td>adherent</td>
<td>C. griseus (hamster)</td>
<td>Ovary</td>
</tr>
<tr>
<td>COS–7</td>
<td>adherent</td>
<td>C. aethiops (monkey)</td>
<td>Kidney</td>
</tr>
<tr>
<td>DU–145</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Prostate Carcinoma</td>
</tr>
<tr>
<td>HEK–293</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Kidney</td>
</tr>
<tr>
<td>HeLa</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Cervical Adenocarcinoma</td>
</tr>
<tr>
<td>HepG2</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Liver Carcinoma</td>
</tr>
<tr>
<td>Huh-7</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Liver Carcinoma</td>
</tr>
<tr>
<td>Jurkat</td>
<td>suspension</td>
<td>H. sapiens</td>
<td>Acute T-Cell Leukemia</td>
</tr>
<tr>
<td>K-562</td>
<td>suspension</td>
<td>H. sapiens</td>
<td>Chronic Myelogenous Leukemia</td>
</tr>
<tr>
<td>ME–180</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Cervical Epidermoid Carcinoma</td>
</tr>
<tr>
<td>NCI–H460</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Large Cell Lung Cancer</td>
</tr>
<tr>
<td>Neuro 2A</td>
<td>adherent</td>
<td>M. musculus (mouse)</td>
<td>Brain Blastoma</td>
</tr>
<tr>
<td>NIH/3T3</td>
<td>adherent</td>
<td>M. musculus (mouse)</td>
<td>Embryonic Fibroblast</td>
</tr>
<tr>
<td>PC–12</td>
<td>adherent</td>
<td>R. norvegicus (rat)</td>
<td>Adrenal Pheochromocytoma</td>
</tr>
<tr>
<td>Primary Hepatocytes</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Liver</td>
</tr>
<tr>
<td>PT-K75</td>
<td>adherent</td>
<td>S. scrofa (pig)</td>
<td>Nasal Turbinate Mucosa</td>
</tr>
<tr>
<td>Raji</td>
<td>suspension</td>
<td>H. sapiens</td>
<td>B Lymphocyte</td>
</tr>
<tr>
<td>SK–N–AS</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Brain Neuroblast</td>
</tr>
<tr>
<td>SK–N–SH</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Brain Fibroblast</td>
</tr>
<tr>
<td>U–87 MG</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Brain Glioblastoma</td>
</tr>
<tr>
<td>U–2 OS</td>
<td>adherent</td>
<td>H. sapiens</td>
<td>Bone Osteosarcoma</td>
</tr>
</tbody>
</table>
Workflow

Perform cell lysis

Wash cells in cold PBS in the culture plate, or wash and transfer ≤10^5 cells to tubes or plates for lysis. (page 10)

(Optional) Dilute DNase I into Lysis Solution at 1:100. (page 11)

Add 50 µL Lysis Solution and mix 5 times. (page 11)

Incubate the lysis reactions for 5 min at room temp (19–25°C). (page 11)

Add 5 µL Stop Solution, or 6 µL Stop Solution with XenoRNA™ Control, and mix 5 times. (page 11)

Incubate for 2 min at room temperature. (page 12)

Potential stopping point

Perform reverse transcription (RT)

Program the thermal cycler. (page 12)

Assemble an RT Master Mix and distribute to reaction tubes/plates. (page 12)

Add lysate and mix thoroughly. (page 13)

Run the RT thermal cycler program. (page 13)

Real-time PCR

Program the real-time PCR instrument. (page 13)

Assemble the PCR Cocktail and aliquot into reaction tubes/plates. (page 13)

Add cDNA samples and mix thoroughly. (page 14)

Run the PCRs in a real-time PCR instrument. (page 14)
Kit contents and storage conditions

The TaqMan® Gene Expression Cells-to-CT™ Kit is available in sizes for lysis of 40, 100, or 400 samples. For each lysis reaction, the kit includes RT and PCR reagents for the following numbers of reactions:

- **40 reaction size** (Cat. no. 4399002): For each lysis reaction, RT reagents for one reverse transcription reaction (RT) and one minus-RT control are included, and Gene Expression Master Mix for either 40, 50 µL real-time PCR assays or 100, 20 µL reactions.
- **100 reaction size** (Cat. no. AM1728): For each lysis reaction, RT reagents for one reverse transcription reaction (RT) and one minus-RT control are included, and Gene Expression Master Mix for either 200, 50 µL real-time PCR assays or 500, 20 µL reactions.
- **400 reaction size** (Cat. no. AM1729): For each lysis reaction, RT reagents for one reverse transcription reaction (RT) and one minus-RT control are included, and Gene Expression Master Mix for either 800 50–µL real-time PCR assays or 2000 20–µL reactions.

Note that TaqMan® Gene Expression Assays, which contain the primers and probe needed for reverse transcription and real-time PCR are not included with the TaqMan® Gene Expression Cells-to-CT™ Kit.

TaqMan® Gene Expression Cells-to-CT™ Kit procedure

IMPORTANT! These instructions describe using fresh cultured cells. If your experiment requires frozen cultured cells, we recommend washing the cells in cold PBS as described in step 1 before freezing. When you are ready to start the procedure, allow the cells to thaw on ice, and begin the procedure at step 2.

Before you begin

- Thaw Stop Solution, invert or flick the tube several times to mix thoroughly (do not vortex), and place on ice.
- Chill 1X PBS to 4°C.
Suggested controls and replicates

Biological and technical replicates
The definitions of biological and technical replicates can have different interpretations; here we define biological replicates as separate lysis reactions and technical replicates as separate PCRs. Our minimum and recommended number of replicates are the following:

- Biological replicates: 2–4
- Technical (PCR) replicates: 2–4

Negative controls for RT-PCR

- Minus-RT control:
 Minus-RT controls contain all the RT reaction components except the 20X RT Enzyme Mix (substitute water); they demonstrate that the template for the PCR was cDNA, and not genomic DNA.

 Note: Minus-RT controls may not be necessary if the cDNA will be amplified using a TaqMan® Gene Expression Assay with the suffix “_m*”; these assays are designed to span an exon-exon junction and will not amplify genomic DNA.

- No-template control:
 No-template controls contain all the PCR components except the cell lysate (substitute water). If the no-template control yields a fluorescent signal, it indicates that the RT or PCR reagents were contaminated with DNA, for example; PCR product from previous reactions.

Perform cell lysis

1. Wash cells in cold PBS in the culture plate, or wash and transfer ≤10⁵ cells to tubes or plates for lysis.

IMPORTANT! The maximum number of cells that can be used in this procedure varies somewhat according to cell type, but is generally 10⁵ cells. Instructions for a pilot experiment to determine the maximum number of cells per reaction is outlined in Appendix A, “Pilot Experiment” on page 19. Using too many cells per lysis reaction may result in incomplete lysis and/or inhibition of RT-PCR.

For adherent cells grown in 96- or 384-well plates:
It is important to start with cells that have been cultured until they are fully adhered to the plate, otherwise they will be lost during washing.

a. Estimate (or count) the number of cells per well. Make sure that each well contains 10–10⁵ cells.

b. Aspirate and discard the culture medium from the wells.

c. Add 50 µL of cold (4°C) 1X PBS to each well.

d. Aspirate the PBS from the well. Remove as much PBS as possible without disturbing the cells. Proceed to step 2.

Cells grown in other vessels (adherent and suspension cells)

a. Adherent cells only (for suspension cells, start at step b): Detach cells using the subculturing method routinely employed in your laboratory for the cell type. If trypsin is used, inactivate it before proceeding.
b. Count, then gently pellet the cells, aspirate and discard the growth medium, and place cells on ice.

c. Wash cells in cold (4°C) PBS by resuspending them in ~0.5 mL PBS per 10^6 cells (or ~50 µL PBS for ≤10^5 cells). Gently pellet the cells, then aspirate and discard as much of the PBS as possible without disturbing the cell pellet. Place the cells on ice.

Note: Alternatively, cells can be split into aliquots for individual lysis reactions before washing in PBS.

d. Resuspend cells in fresh, cold 1X PBS so that 5 µL will contain the desired number of cells for a single lysis reaction (10–10^5 cells/lysis).

e. Split the cell suspension into individual lysis reactions: distribute 5 µL of the suspension to wells of a U-bottom multiwell plate or microcentrifuge tubes. Place the cells on ice.

2. **(Optional) Dilute DNase I into Lysis Solution at 1:100.**

To remove genomic DNA during cell lysis, determine the volume of Lysis Solution needed for the experiment, and dilute DNase I into the Lysis Solution at 1:100 for use in the next step. Include ~10% overage; examples are shown in the table below:

<table>
<thead>
<tr>
<th>Component</th>
<th>Each reaction</th>
<th>96 reactions</th>
<th>384 reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lysis Solution</td>
<td>49.5 µL</td>
<td>5.23 mL</td>
<td>20.91 mL</td>
</tr>
<tr>
<td>DNase I</td>
<td>0.5 µL</td>
<td>52.8 µL</td>
<td>211 µL</td>
</tr>
</tbody>
</table>

3. **Add 50 µL Lysis Solution and mix 5 times.**

a. Add 50 µL Lysis Solution (with or without DNase I) to each sample.

b. Mix the lysis reaction by pipetting up and down 5 times.

To avoid bubble formation, mix with the pipettor set at 35 µL and expel the solution without emptying the pipette tip completely.

Note: Lysis Solution and Cells-to-CT™ lysates may appear cloudy at room temperature—this is expected.

4. **Incubate the lysis reactions for 5 min at room temp (19–25°C).**

5. **Add 5 µL Stop Solution, or 6 µL Stop Solution with XenoRNA™ Control, and mix 5 times.**

a. **(Optional) To include an endogenous control using the TaqMan® Cells-to-CT™ Control Kit, prepare Stop Solution containing XenoRNA™ Control for the samples in the experiment at hand. Add 1 µL XenoRNA™ Control per 5 µL Stop Solution.**

b. **Pipet 5 µL of Stop Solution alone or 6 µL of Stop Solution with XenoRNA™ Control directly into each lysis reaction.**

Do this by touching the surface of the lysate with the opening of the pipet tip to ensure that all of the Stop Solution is added to the lysate.

Note: To dispense Stop Solution using a multichannel pipettor, pipet Stop Solution from a set of strip tubes or adjacent wells in a 96-well plate rather than from a reagent reservoir. If desired, unused Stop Solution can be stored frozen in these tubes when properly sealed.
c. Mix the lysis reaction by pipetting up and down 5 times.
 To avoid bubble formation, mix with the pipettor set at 35 µL and expel the solution without emptying the pipette tip completely.

 IMPORTANT! Thoroughly mix the Stop Solution into the lysate.

6. **Incubate for 2 min at room temperature.**
 a. Incubate for 2 min at room temperature (19–25°C).
 Do not allow Cells-to-CT™ lysates to remain at room temp for longer than 20 min after adding the Stop Solution.

 STOPPING POINT Lysates can be stored on ice for ≤2 hr, or at −20°C or −80°C for ≤5 months.

1. **Program the thermal cycler for the RT as shown in the table below:**

<table>
<thead>
<tr>
<th>Stage</th>
<th>Reps</th>
<th>Temp</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reverse transcription (hold)</td>
<td>1</td>
<td>37°C</td>
<td>60 min</td>
</tr>
<tr>
<td>RT inactivation (hold)</td>
<td>2</td>
<td>95°C</td>
<td>5 min</td>
</tr>
<tr>
<td>Hold</td>
<td>3</td>
<td>4°C</td>
<td>indefinite</td>
</tr>
</tbody>
</table>

2. **Assemble an RT Master Mix and distribute to reaction tubes/plates.**
 a. Calculate the number of RT reactions in the experiment. Using the table below, assemble an RT Master Mix for all the reactions plus ~10% overage in a nuclease-free microcentrifuge tube on ice.
 The table below shows the reaction setup using the recommended amount of lysate in each RT reaction, 10 µL. If desired, up to 45% of the RT reaction volume (22.5 µL) can be Cells-to-CT™ lysate; adjust the volume of Nuclease-free Water accordingly.
 Note: If a 50 µL RT reaction will not provide enough material for all of the planned PCR assays, the RT reaction can be scaled up proportionally.

<table>
<thead>
<tr>
<th>Component</th>
<th>Each reaction</th>
<th>96 reactions</th>
<th>384 reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X RT Buffer</td>
<td>25 µL</td>
<td>2.64 mL</td>
<td>10.56 mL</td>
</tr>
<tr>
<td>20X RT Enzyme Mix†</td>
<td>2.5 µL</td>
<td>264 µL</td>
<td>1.056 mL</td>
</tr>
<tr>
<td>Nuclease-free Water</td>
<td>12.5 µL</td>
<td>1.32 mL</td>
<td>5.28 mL</td>
</tr>
<tr>
<td>Final volume RT master mix</td>
<td>40 µL</td>
<td>4.22 mL</td>
<td>16.9 mL</td>
</tr>
</tbody>
</table>

 † For the minus-RT control, use Nuclease-free Water in place of 20X RT Enzyme Mix.

 b. Mix gently, but thoroughly, centrifuge briefly, then place the RT Master Mix on ice.
 c. Distribute RT Master Mix to nuclease-free PCR tubes or wells of a multiwell plate.
3. Add lysate and mix thoroughly.
 a. Add sample lysate to each aliquot of RT Master Mix for a final 50 µL reaction volume.
 b. Once assembled, mix reactions gently, then centrifuge briefly to collect the contents at the bottom of the reaction vessel.

 STOPPING POINT Assembled RT reactions can be stored at 4°C for up to 4 hr.

4. Run the RT thermal cycler program.
 Using a thermal cycler (or real-time PCR instrument), incubate at 37°C for 60 min, then at 95°C for 5 min to inactivate the RT enzyme.

 STOPPING POINT Completed RT reactions may be stored at –20°C.

Real-time PCR

1. Program the real-time PCR instrument as in the following table.

 IMPORTANT! On Applied Biosystems® real-time PCR instruments capable of Fast mode thermal cycling, select Standard mode.

 - TaqMan® Gene Expression Master Mix contains ROX™ passive reference dye.
 - Specify the fluorescent dye(s) used in the TaqMan® Gene Expression Assays for the experiment. The ACTB and XenoRNA™ Gene Expression Assays in the TaqMan® Cells-to-C_{T}™ Control Kit are labeled with FAM™ dye and a nonfluorescent quencher.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Reps</th>
<th>Temp</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>UDG incubation (hold)</td>
<td>1</td>
<td>50°C</td>
<td>2 min</td>
</tr>
<tr>
<td>Enzyme activation (hold)</td>
<td>2</td>
<td>95°C</td>
<td>10 min</td>
</tr>
<tr>
<td>PCR (cycle)</td>
<td>3</td>
<td>95°C</td>
<td>15 sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60°C</td>
<td>1 min</td>
</tr>
</tbody>
</table>

2. Assemble the PCR Cocktail and aliquot into reaction tubes/plates.
 a. Calculate the number of PCR assays in the experiment. Using the table below, assemble a PCR Cocktail for all the reactions plus ~10% overage in a nuclease-free microcentrifuge tube at room temp.

 The table below shows the reaction setup using the recommended amount of cDNA in each PCR, 20%. If desired, up to 45% of the PCR volume can be cDNA; adjust the quantity of Nuclease-free Water accordingly

 Note: Before use, mix the TaqMan® Gene Expression Master Mix by swirling the bottle. Mix TaqMan® Assays by vortexing briefly or flicking the tube a few times, and then centrifuging.
b. Distribute the PCR Cocktail into individual PCR tubes or wells of a real-time PCR plate at room temp.

Note: Be sure to use reaction containers with lids that are compatible with your real-time PCR instrument.

3. **Add cDNA samples and mix thoroughly.**
 a. Add a portion of the RT reaction (cDNA sample) to each aliquot of PCR Cocktail as indicated in the table below.

<table>
<thead>
<tr>
<th>Component</th>
<th>20 µL PCRs each rxn</th>
<th>50 µL PCRs each rxn</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaqMan® Gene Expression Master Mix (2X)</td>
<td>10 µL</td>
<td>25 µL</td>
</tr>
<tr>
<td>TaqMan® Gene Expression Assay† (20X)</td>
<td>1 µL</td>
<td>2.5 µL</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>5 µL</td>
<td>12.5 µL</td>
</tr>
<tr>
<td>Final volume PCR cocktail</td>
<td>16 µL</td>
<td>40 µL</td>
</tr>
</tbody>
</table>

 † Not included in the TaqMan® Gene Expression Cells-to-CT™ Kit.

 b. Cover the plate or close the tubes, and mix gently. Then centrifuge briefly to remove bubbles and collect the contents at the bottom of the wells/tubes.

4. **Run the PCRs in a real-time PCR instrument.**
 Place the reactions in a real-time PCR instrument and start the run.
 Refer to your real-time PCR instrument guide for information on evaluating the data.
Troubleshooting

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Recommended action</th>
</tr>
</thead>
</table>
| No PCR product or unexpected PCR | Problems with adding or mixing the Stop | Components in the Lysis Solution may inhibit RT-PCR if they are not fully inactivated by the Stop Solution.
| products | Solution | • Be sure to add the Stop Solution directly to the lysate, in other words, touch the lysate with the opening of the pipet tip when adding the Stop Solution to make sure that the entire 5 or 6 µL of Stop Solution is added to each sample.
| | | • Also, we recommend mixing by pipetting up and down five times. |
| | | **RNA was degraded before starting this procedure** |
| | | To avoid RNA degradation, keep cells in PBS on ice before starting the cell lysis procedure. Take cells off ice just prior to adding Lysis Solution. |
| RNA was degraded before starting | | **RNase in the sample was not completely inactivated** |
| this procedure | | **Too many cells were used in the lysis reaction** |
| | | If too many cells per sample are used in the procedure, the RNase in the sample may not be totally inactivated and/or cellular components or debris could inhibit reverse transcription or PCR.
| | | • Generally $\leq 10^5$ cells can be used successfully in the Cells-to-C_T™ procedure, but if RT or PCR fails, try using fewer cells (e.g., 5–10-fold fewer cells).
| | | • Also, consider performing a pilot experiment to determine the optimal number of cells for your cell type (Appendix A). |
| | | **Too much PBS was left on the cells, diluting the Lysis Solution**
| | | If >5 µL of PBS remains in samples when the Lysis Solution is added, the Lysis Solution may be too dilute to fully inactivate cellular RNases. To avoid this, remove as much PBS as possible before adding Lysis Solution to the cells, or if you split the cells after the PBS wash, resuspend cells in ≤ 5 µL PBS for each sample of 10^5 cell. |
Observation | **Possible cause** | **Recommended action**
--- | --- | ---
No PCR product or unexpected PCR products (continued from page 15) | Lysates sat too long before going into RT | Do not allow lysates to sit longer than 20 min at room temperature once the Stop Solution has been added: either freeze the lysates at –20°C or –80°C, or start the RT reactions. Alternatively, lysates can be safely stored on ice for up to 2 hr after lysis.

The sample does not contain the target RNA | Negative results are often difficult to confirm as valid. Consider running the following experiments before concluding that the sample does not contain the RNA of interest:

- Verify that the TaqMan® Gene Expression Cells-to-CT™ Kit procedure is working by including XenoRNA™ Control (from the TaqMan® Cells-to-CT™ Control Kit, sold separately) in the sample in step 5a on page 11. Then use the XenoRNA™ TaqMan® Gene Expression Assay to amplify a XenoRNA™ target following the instructions in section “Real-time PCR” on page 13. If product is generated in the XenoRNA™ amplification, but no product is seen in the PCR for the gene of interest, then it is possible that the RNA of interest is not expressed in the cells and/or is undetectable with this procedure.

- For experiments with samples consisting of <100 cells per lysis, it may be desirable to verify that each sample did, in fact, contain cells. Check that samples contained cells with intact RNA by real-time RT-PCR with a TaqMan® Gene Expression Assay for a highly-expressed endogenous control such as β-actin using the ACTB assay included in the TaqMan® Cells-to-CT™ Control Kit (sold separately).

- Check that the PCR for your target works with your PCR primers, reagents, and equipment by using cDNA generated from purified RNA from the same source (or a similar one) in PCR. If the amplification does not give good results using cDNA from purified RNA, it will not work with Cells-to-CT™ lysate.
RT-PCR products in the negative control reactions

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Recommended action</th>
</tr>
</thead>
</table>
| PCR products in the no-template PCR control | PCR products in the no-template PCR control | PCR products in the no-template PCR control indicate that DNA contamination of the sample. Contamination of PCR reagents, pipettors, and benchtops with DNA should be considered.
• Careful laboratory practices are essential to avoid contaminating reactions with PCR products. Keep concentrated DNA solutions (PCR products, plasmid prep, etc.) away from the area where PCRs are assembled. Clean the lab bench and the pipettors routinely with Ambion® DNAZap™ Solution (Cat. no. AM9890) or another DNA decontamination product. Use barrier tips to pipette PCR reagents, and store completed PCRs in a different location from the PCR reagents. Unfortunately, the only way to remedy contaminated reagents is to replace them.
• It is always a good idea to routinely include a no-template negative control reaction with experimental PCRs. If no-template controls routinely yield PCR products, more stringent steps may be taken to control contamination. |
| RT-PCR products in the minus-RT control (continued from page 17) | PCR products in the minus-RT control | If PCR products are seen in the minus-RT control reaction, but not in the no-template control, it indicates that genomic DNA remains in the samples and that genomic DNA was amplified in real-time PCR. Consider the following suggestions:
• Be sure to mix DNase I into the Lysis Solution thoroughly in step 2 on page 11 for efficient removal of genomic DNA from samples.
• Consider using a TaqMan® Gene Expression Assay designed to span an exon-exon boundary; such assays are designated with _m* at the end of the part number.
• Use fewer cells per lysis reaction.
• Lysed cells (step 3 on page 11) using Lysis Solution that is at room temperature, and make sure that lysis reactions occur at room temperature (19–25°C).
If PCR products are still seen in minus-RT control reactions, try the following two suggestions in the order shown:
– Increase the lysis reaction incubation time in step 4 on page 11 to 8 minutes.
– Use Lysis Solution that has been warmed up to 25°C for cell lysis (on page 11). |
Pilot Experiment

The purpose of this pilot experiment is to identify the maximum number of cells to use in TaqMan® Gene Expression Cells-to-CT™ Kit reactions. Using too many cells can result in inefficient cell lysis and RT-PCR inhibition, and the maximum number of cells varies somewhat according to the cell type.

In this simple experiment, cells are serially diluted and lysed following the normal protocol. If you have the TaqMan® Cells-to-CT™ Control Kit (Cat. no. 4386995), we recommend adding XenoRNA™ Control to the Stop Solution used to prepare Cells-to-CT™ lysates. The lysates are then subjected to real-time RT-PCR for an endogenous control gene, such as β-actin, (an ACTB TaqMan® Gene Expression Assay is included in the TaqMan® Cells-to-CT™ Control Kit), and the CT values are plotted against the log of the number of cells in the lysis reaction. The resulting line will be linear for cell numbers that are compatible with the procedure and will deviate from linearity at concentrations that result in incomplete lysis or RT-PCR inhibition. The cDNA can be amplified in parallel using the XenoRNA™ TaqMan® Gene Expression Assay (from the Cells-to-CT™ Control Kit). In contrast to the series of PCRs for an endogenous control gene, the number of cells in the lysis reaction should have no effect on the CT value seen in XenoRNA™ amplification reactions because each reaction will contain the same amount of XenoRNA™ target.

Procedure

1. Harvest, count and wash cells.
 Follow the instructions for harvesting cells in step 1 on page 10, but follow the instructions in the next step for resuspending them in PBS.

2. Dilute cells to 2×10^5 cells/µL.
 Prepare a cell suspension containing 2 x 10^5 cells/µL. Keep the cell suspension on ice.

3. Make 5 serial dilutions of the cells in 5-fold increments
 a. Prepare 5 tubes containing 45 µL of cold 1X PBS in ice.
 b. Transfer 5 µL of the 2 x 10^5 cells/µL to the first tube (1:5 dilution) and mix gently but thoroughly. Continue making the serial dilutions by transferring 5 µL of each solution to the subsequent tube to finish with 5 suspensions containing 2 x 10^4, 2000, 200, 20, and 2 cells per µL.

4. Transfer cells to reaction containers with 3 replicates.
 Transfer 5 µL of each cell suspension to individual reaction tubes or wells of a multiwell plate. Include 3 biological replicates of each cell concentration. The final cell counts will be 10^5, 10^4, 1000, 100, and 10 cells.
5. Lyse cells in 50 µL of Lysis Solution and incubate at room temp for 5 min.
 a. Add 50 µL of Cells-to-C_T™ Lysis Solution to each of the samples prepared in step 4.
 b. Mix thoroughly by pipetting up and down 5 times.
 c. Incubate at room temperature for 5 min.

6. Add 5–6 µL Stop Solution, mix, and incubate at room temp for 2 min
 a. (Optional) Add XenoRNA™ Control to the Stop Solution.
 Mix 16.5 µL XenoRNA™ Control with 82.5 µL Stop Solution for use in the next step.
 b. Add 5 µL Stop Solution alone or 6 µL Stop Solution with XenoRNA™ Control to each cell lysate, and mix thoroughly by pipetting up and down 5 times.
 c. Incubate at room temp for 2 min.

7. Perform RT-PCR.
 Follow the protocols described in sections “Perform cell lysis” on page 10 to “Real-time PCR” on page 13 to reverse transcribe and perform PCR using all samples.
 - Amplify with any Applied Biosystems® Endogenous Control TaqMan® Gene Expression Assay, for example with the ACTB assay included in the Cells-to-C_T™ Control Kit.
 - If XenoRNA™ Control was added to samples, it can be amplified in a separate PCR using the XenoRNA™ TaqMan® Gene Expression Assay included in the Cells-to-C_T™ Control Kit.
 - You can also evaluate real-time PCR of the cell titration using the TaqMan® Gene Expression Assay for the target-of-interest to help determine the minimum number of cells required for its detection.

8. Evaluate results.
 - **Endogenous control**
 Create a plot of C_T versus the log of the number of cells in the lysis. The C_T values should decrease in a linear fashion as the number of cells increase, for cell numbers that are compatible with the procedure. When the number of cells per lysis reaction exceeds the capacity of the system, resulting in incomplete lysis or inhibition of RT-PCR, the data will not be linear. In future experiments, do not exceed the number of cells per lysis reaction that provided results within the linear range in the pilot experiment.
• XenoRNA™ Control

The \(C_T \) values from the XenoRNA™ Control should be consistent (±1 \(C_T \)) regardless of the number of cells in the lysis reaction, indicating that no RT-PCR inhibitors are present in the Cells-to-CT™ lysate. If \(C_T \) values begin to increase at higher numbers of cells per lysis reaction, it indicates that inhibitors were introduced into RT-PCR with this number of cells. For future experiments, use only the number of cells per lysis reaction that did not show an increase in \(C_T \) value.

• Target-of-interest

The pilot experiment can provide useful information about the number of cells required to detect the target-of-interest. Examine the results carefully and choose cell numbers that will provide sufficient signal for the experiment.

Figure 2 Example pilot experiment

HeLa cells were diluted and lysed following the instructions for the pilot experiment. Lysates were reverse transcribed and amplified using the indicated TaqMan® Gene Expression Assay in eight replicate reactions. The resulting \(C_T \) values were plotted against the log of the number of cells used in the lysis reaction (as recommended). This experiment shows that even at 10^5 cells per lysis reaction, RT-PCR is not compromised by reaction inhibitors carried over from the cell lysate. It also shows that the lowest number of cells/lysis reaction tested, 160 cells, is approaching the limit for detection of vascular endothelial growth factor (VEGF).
Appendix A Pilot Experiment

Procedure
Materials Not Provided with the Kit

Lab equipment and supplies

- General laboratory equipment including vortex mixer, microcentrifuge, and pipettors
- Nuclease-free pipette tips, nuclease-free microcentrifuge tubes and/or U-bottom 96-well plates (for cells not grown in 96- or 384-well culture plates)
- Real-time PCR tubes or 96-well plates appropriate for your instrument
- Thermal cycling instrument: The TaqMan® Cells-to-C_T™ Kits were developed using Applied Biosystems® thermal cyclers (for the RT) and real-time PCR instruments, however the technology is expected to be compatible with any thermal cycler for the RT reaction and any real-time PCR system compatible with the fluorophores used in TaqMan® Gene Expression Assays. TaqMan® Gene Expression Cells-to-C_T™ Kit reactions can be run on any currently available Applied Biosystems® instrument platforms, including the following:
 - Reverse transcription
 - GeneAmp® PCR System 9700
 - Veriti™ 96-Well Thermal Cycler
 - Real-time PCR
 - Applied Biosystems® 7900 HT Fast Real-Time PCR System (in “standard” mode)
 - Applied Biosystems® 7500 Real-Time PCR System
 - StepOne® or StepOnePlus® Real-Time PCR Systems

Reagents

- RT-PCR grade water
- Phosphate-buffered saline (PBS), for example diluted from Life Technologies 10X PBS, (Part nos. AM9624 and AM9625)
- TaqMan® Gene Expression Assay for real-time PCR of the target(s) of interest (Life Technologies Cat. no. 4331182, 435137)
- (optional) TaqMan® Cells-to-C_T™ Control Kit (Cat. no. 4386995)
Related products available from Life Technologies

TaqMan® Cells-to-C_T™ Control Kit

Cat. no. 4386995

Designed for use with TaqMan® Cells-to-C_T™ Kits, the Control Kit includes XenoRNA™ Control, an RNA transcript that has no homology to any known sequence, and a corresponding XenoRNA™ TaqMan® Gene Expression Assay. It also includes a TaqMan® Assay for the highly expressed endogenous control gene b-Actin. These assays are designed to be run in parallel with assay(s) for the gene(s)-of-interest to serve as positive controls for reverse transcription and real-time PCR.

TaqMan® Gene Expression Assays

Cat. nos. 4331182, 4351372

Pre-designed and pre-optimized TaqMan® probe and primer sets for quantitative gene expression analysis using real-time PCR. Each TaqMan® Assay is a ready-to-use 20X mixture of PCR primers and TaqMan® probe designed for amplification using universal cycling conditions so that any combination of assays can be run using the same thermal cycling conditions. There are over 700,000 inventoried assays for human, mouse, rat, Arabidopsis, Drosophila, C. elegans, C. familiaris (dog), and Rhesus macaque genes, and Custom TaqMan® Gene Expression Assays are also available.

TaqMan® MicroRNA Assays

Pre-designed and pre-optimized TaqMan® probe and primer sets for quantitative miRNA expression analysis using real-time PCR. Each TaqMan® Assay is a ready-to-use 20X mixture of PCR primers and TaqMan® probe designed for amplification using universal cycling conditions so that any combination of assays can be run using the same thermal cycling conditions. There are over 700,000 inventoried assays for human, mouse, rat, Arabidopsis, Drosophila, C. elegans, C. familiaris (dog), and Rhesus macaque genes, and Custom TaqMan® Gene Expression Assays are also available.

Multiplex RT for TaqMan® MicroRNA Assays

Cat. no. 4384791 and others

Multiplex RT for TaqMan® MicroRNA Assays are a set of eight predefined reverse transcription primer pools that streamline the process of creating cDNA for TaqMan® assay analysis of 365 unique human miRNAs. Each individual Multiplex RT pool contains up to 48 primers per pool, including two endogenous controls for data normalization. Multiplex RT pools are formulated for use with individual TaqMan® MicroRNA Assays providing better sensitivity and specificity, reduced sample consumption, and quicker miRNA profiling results compared to microarray-based methods.

Applied Biosystems® Real-Time PCR Instruments

Since pioneering real-time PCR, Applied Biosystems has continued to develop the technology to provide more powerful solutions for labs of all sizes. The Applied Biosystems® family of real-time platforms, which includes the Applied Biosystems® 7300, 7500, 7500 Fast, 7900 HT Fast, StepOne®, and StepOnePlus® Real-Time PCR Systems, provide cutting-edge tools while making real-time PCR more accessible than ever. These systems are easy to use with next generation software and the flexibility to run the real-time chemistry of your choice.

RNaseZap® Solution

Cat. nos. AM9780, AM9782, AM9784

RNaseZap® RNase Decontamination Solution is simply sprayed, poured, or wiped onto surfaces to instantly inactivate RNases. Rinsing twice with distilled water will eliminate all traces of RNase and RNaseZap® Solution.

RNase-free Tubes & Tips

Ambion® RNase-free tubes and tips are available in most commonly used sizes and styles. They are guaranteed RNase- and DNase-free.

RT-PCR Grade Water

Cat. no. AM9935

Ambion® RT-PCR Grade Water is certified free of nucleases, and free of nucleic acid contamination that may cause false-positive signals in RT-PCR. The RT-PCR Grade Water is ready to use and requires no preparation, mixing, or autoclaving. Like all Ambion® water products, RT-PCR Grade Water is deionized, autoclaved, and sterile filtered. Each lot is subjected to 2 rounds of rigorous quality control testing before being certified nuclease-free.
| Plastic Consumables for PCR | Applied Biosystems® MicroAmp® disposables are optimized to provide unmatched temperature accuracy and uniformity for fast, efficient PCR amplification. The plastics are compatible with various Applied Biosystems® platforms, including real-time PCR instruments. Choose your format based on throughput requirements or your thermal cycler block. |
| DNAZap™ Solution Cat. no. AM9890 | DNAZap™ PCR DNA degradation solution consists of two solutions that are innocuous separately but, when mixed, are able to degrade high levels of contaminating DNA and RNA from surfaces instantly. |
WARNING! GENERAL SAFETY. Using this product in a manner not specified in the user documentation may result in personal injury or damage to the instrument or device. Ensure that anyone using this product has received instructions in general safety practices for laboratories and the safety information provided in this document.

- Before using an instrument or device, read and understand the safety information provided in the user documentation provided by the manufacturer of the instrument or device.
- Before handling chemicals, read and understand all applicable Safety Data Sheets (SDSs) and use appropriate personal protective equipment (gloves, gowns, eye protection, etc). To obtain SDSs, see the “Documentation and Support” section in this document.
Chemical safety

WARNING! GENERAL CHEMICAL HANDLING. To minimize hazards, ensure laboratory personnel read and practice the general safety guidelines for chemical usage, storage, and waste provided below, and consult the relevant SDS for specific precautions and instructions:

- Read and understand the Safety Data Sheets (SDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. To obtain SDSs, see the “Documentation and Support” section in this document.
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing).
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood).
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer’s cleanup procedures as recommended in the SDS.
- Handle chemical wastes in a fume hood.
- Ensure use of primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)
- After emptying a waste container, seal it with the cap provided.
- Characterize (by analysis if necessary) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
- Ensure that the waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.
- **IMPORTANT!** Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.
Documentation and Support

Obtaining SDSs

Safety Data Sheets (SDSs) are available from www.lifetechnologies.com/sds

Note: For the SDSs of chemicals not distributed by Life Technologies, contact the chemical manufacturer.

Obtaining support

For the latest services and support information for all locations, go to:

www.lifetechnologies.com

At the website, you can:

• Access worldwide telephone and fax numbers to contact Technical Support and Sales facilities
• Search through frequently asked questions (FAQs)
• Submit a question directly to Technical Support
• Search for user documents, SDSs, vector maps and sequences, application notes, formulations, handbooks, certificates of analysis, citations, and other product support documents
• Obtain information about customer training
• Download software updates and patches

Limited product warranty

Life Technologies Corporation and/or its affiliate(s) warrant their products as set forth in the Life Technologies’ General Terms and Conditions of Sale found on Life Technologies’ website at www.lifetechnologies.com/termsandconditions. If you have any questions, please contact Life Technologies at www.lifetechnologies.com/support.
Documentation and Support

Limited product warranty