Amplex® Red Neuraminidase (Sialidase) Assay Kit (A22178)

Introduction

Neuraminidase (also known as sialidase) is a very common enzyme that hydrolyzes terminal sialic acid residues on polysaccharide chains, most often exposing a galactose residue. Although neuraminidase is found in mammals, it is predominantly expressed in microorganisms such as bacteria and viruses.\(^1\)

The negative-stranded RNA influenza virus contains two surface glycoproteins, hemagglutinin (HA) and neuraminidase. Neuraminidase is thought to play a key role in the invasion of target cells and the subsequent replication of the influenza virus through its cleavage of target cell receptor sialic acid moieties. This action prevents further interaction of the virus with the target cell and facilitates elution of progeny virions from the infected cell.\(^2,3\) Additionally, newly synthesized neuraminidase and HA on virions may also contain sialic acid residues that can be cleaved by neuraminidase in order to prevent self-aggregation. It is also thought that the penetration of mucosal linings by the virus is enhanced by neuraminidase hydrolytic action on fetuin, a major component of these membranes. These essential activities make neuraminidase an important target for influenza drug development.

Various methods using chemiluminescence, absorption and fluorescence have been developed to quantitate neuraminidase in biological fluids for detection of influenza virus\(^2\) and for screening inhibitors of neuraminidase activity in drug development.\(^2,4\) The ultimate goal has been to develop a rapid, single-step assay that is sensitive and adaptable for a high throughput screening format. The development of an assay system utilizing the Amplex® Red reagent with superior spectral and chemical characteristics meets these needs.

The Amplex Red Neuraminidase (Sialidase) Assay Kit provides an ultrasensitive method for detecting neuraminidase activity. This assay utilizes Amplex Red to detect H\(_2\)O\(_2\) generated by galactose oxidase oxidation of desialilated galactose, the end result of neuraminidase action. The H\(_2\)O\(_2\) then, in the presence of horseradish peroxidase (HRP), reacts with a 1:1 stoichiometry with Amplex Red reagent to generate the red-fluorescent oxidation product, resorufin.\(^5\) Resorufin has absorption and fluorescence emission maxima of approximately 571 nm and 585 nm, respectively (Figure 1), and because the extinction coefficient is high (54,000 cm\(^{-1}\)M\(^{-1}\)), the assay can be performed either fluorometrically or spectrophotometrically. In a purified system with fetuin as the substrate, neuraminidase levels as low as 0.2 mU/mL have been detected with the Amplex Red Neuraminidase (Sialidase) Assay Kit (Figure 2). Neuraminidase activity can also be detected in biological samples such as serum (Figure 3).

Figure 1. Normalized absorption and fluorescence emission spectra of resorufin, the product of the Amplex Red reagent.

Figure 2. Detection of neuraminidase activity using the Amplex Red reagent–based assay. Each reaction contained 50 µM Amplex Red reagent, 0.1 U/mL HRP, 2 U/mL galactose oxidase, 250 µg/mL fetuin and the indicated amount of neuraminidase in 1X Reaction Buffer. Reactions were incubated at 37°C. After 30 minutes, fluorescence was measured in a fluorescence microplate reader using excitation at 530 ± 12.5 nm and fluorescence detection at 590 ± 17.5 nm. A background fluorescence of 70 fluorescence units was subtracted from each data point.
Materials

Kit Contents
- Amplex Red reagent (MW = 257, Component A), two vials, each containing 0.26 mg
- Dimethylsulfoxide (DMSO), anhydrous (Component B), 500 µL
- Horseradish peroxidase (Component C), 20 U, where 1 unit is defined as the amount of enzyme that will form 1.0 mg purpurogallin from pyrogallol in 20 seconds at pH 6.0 at 20°C
- Hydrogen peroxide (H₂O₂) (MW = 34, Component D), 500 µL of a stabilized ~3% solution; the actual concentration is indicated on the component label
- 5X Reaction Buffer (Component E), 10 mL of 0.25 M Tris-HCl, pH 7.2, 5 mM CaCl₂
- Galactose oxidase, from Dactylium dendroides (Component F), 100 U, where one unit will produce a change in absorbance of 1.0 at 425 nm per minute at pH 6.0 at 25°C using a peroxidase/α-tolidine coupled assay with galactose as the substrate
- Fetuin, from fetal calf serum (MW ~67 kDa, Component G), 12 mg
- Neuraminidase, from Clostridium perfringens (Component H), one vial containing approximately 0.1–0.5 U, where one unit will liberate 1.0 µmole of N-acetylneuraminic acid per minute at pH 5.0 at 37°C using bovine submaxillary mucin

Each Kit provides sufficient reagents for approximately 400 assays using either a fluorescence or absorbance microplate reader and reaction volumes of 100 µL per assay.

Storage and Handling
Upon receipt, the kit should be stored frozen at ≤–20°C, protected from light. Stored properly, the kit components should remain stable for at least six months. Allow reagents to warm to room temperature before opening vials. The Amplex Red reagent is somewhat air sensitive. Once a vial of Amplex Red reagent is opened, the reagent should be used promptly. PROTECT THE AMPLEX RED REAGENT FROM LIGHT.

Experimental Protocol

The following procedure is designed for use with a fluorescence or absorbance multiwell plate reader. For use with a standard fluorometer or spectrophotometer, volumes must be increased accordingly.

Please note that resorufin, the product of the Amplex Red reaction, is unstable in the presence of thiols such as dithiothreitol (DTT) and 2-mercaptoethanol. For this reason, the final DTT or 2-mercaptoethanol concentration in the reaction should be no higher than 10 µM.

The absorption and fluorescence of resorufin are pH-dependent. Below the pKₐ (~6.0), the absorption maximum shifts to ~480 nm and the fluorescence quantum yield is markedly lower. In addition, the Amplex Red reagent is unstable at high pH (>8.5). For these reasons, the reactions should be performed at pH 7–8. We recommend using the included Reaction Buffer (pH 7.2) for optimal performance of the Amplex Red reagent.

Figure 3. Detection of neuraminidase activity in serum using the Amplex Red reagent-based assay. Each reaction contained 30 µM Amplex Red reagent, 0.1 U/mL HRP, 2 U/mL galactose oxidase, 250 µg/mL fetuin and the indicated amount of serum in 1X Reaction Buffer. Reactions were incubated at 37°C. After 60 minutes, fluorescence was measured in a fluorescence microplate reader using excitation at 530 ± 12.5 nm and fluorescence detection at 590 ± 17.5 nm. A background fluorescence of 112 units was subtracted from each data point.
(Component F) in 500 μL of 1X Reaction Buffer. After use, the remaining solution should be divided into small aliquots and stored at ≤ –20°C.

1.6 Prepare a 10 mg/mL fetuin stock solution by dissolving the contents of the vial of fetuin (Component G) in 1.2 mL of 1X Reaction Buffer. After use, the remaining solution should be divided into small aliquots and stored at ≤ –20°C.

1.7 Prepare a neuraminidase stock solution by dissolving the contents of the vial of neuraminidase (Component H) in 100 μL of 1X Reaction Buffer. The concentration of this stock solution is approximately 1–5 U/mL. After use, the remaining solution should be divided into small aliquots and stored at ≤ –20°C.

Neuraminidase Assay

The following protocol describes the assay of neuraminidase activity in a total volume of 100 μL per microplate well. The volumes recommended here are sufficient for ~100 assays. The kit provides sufficient material for ~400 assays.

2.1 Dilute the neuraminidase-containing samples in 1X Reaction Buffer. A variable dilution will be required depending on the neuraminidase activity present in the sample. In the first trial the samples should be serially diluted to determine the optimal amount of sample for assay. Pipet 50 μL of each sample into separate wells of a 96-well microplate. Note that the sample concentrations will be twofold lower in the final reaction volume.

2.2 Prepare a no-neuraminidase negative control by pipeting 50 μL of 1X Reaction Buffer alone into one well of the microplate.

2.3 If desired, prepare a neuraminidase positive control by diluting the neuraminidase stock solution (prepared in step 1.7) 50-fold in 1X Reaction Buffer. Pipet 50 μL of the dilute neuraminidase solution into a separate well of the microplate. Please note that the provided neuraminidase (Component H) serves only as a positive control for the Amplex Red Neuraminidase Assay and should not be relied upon as a quantitation standard for enzyme activity.

2.4 If desired, prepare an H₂O₂ positive control by diluting the 20 mM H₂O₂ working solution (prepared in step 1.4) to 10 μM in 1X Reaction Buffer. Pipet 50 μL of the 10 μM stock solution into a separate well of the microplate.

2.5 Prepare a 2X working solution of 100 μM Amplex Red reagent containing 0.2 U/mL HRP, 4 U/mL galactose oxidase and 500 μg/mL fetuin by mixing:

- 50 μL of the Amplex Red reagent stock solution (prepared in step 1.1)
- 10 μL of the HRP stock solution (prepared in step 1.3)
- 100 μL of the galactose oxidase stock solution (prepared in step 1.5)
- 250 μL of the fetuin stock solution (prepared in step 1.6)
- 4.59 mL of 1X Reaction Buffer

This 5 mL volume is sufficient for ~100 assays. Note that the final concentration of each component will be twofold lower in the final reaction volume.

2.6 Begin the reaction by adding 50 μL of the Amplex Red reagent/HRP/galactose oxidase/fetuin working solution to each microplate well containing the samples and controls.

2.7 Incubate the reaction for 30 minutes or longer at 37°C, protected from light. Because the assay is continuous (not terminated), fluorescence or absorbance may be measured at multiple time points to follow the kinetics of the reactions.

2.8 Measure the fluorescence or absorbance in a microplate reader using excitation in the range of 530–560 nm and emission detection at ~590 nm or absorbance at ~560 nm (see Figure 1).

2.9 For each point, correct for background fluorescence or absorbance by subtracting the value derived from the no-neuraminidase control.

References

Product List

Current prices may be obtained from our Web site or from our Customer Service Department.

<table>
<thead>
<tr>
<th>Cat #</th>
<th>Product Name</th>
<th>Unit Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>A22178</td>
<td>Amplex® Red Neuraminidase (Sialidase) Assay Kit 400 assays</td>
<td>1 kit</td>
</tr>
<tr>
<td>A12222</td>
<td>Amplex® Red reagent (10-acetyl-3,7-dihydroxyphenoxazine)</td>
<td>5 mg</td>
</tr>
<tr>
<td>A22177</td>
<td>Amplex® Red reagent "packaged for high-throughput screening"</td>
<td>10 x 10 mg</td>
</tr>
<tr>
<td>A36006</td>
<td>Amplex® UltraRed reagent</td>
<td>5 x 1 mg</td>
</tr>
</tbody>
</table>
Contact Information

Further information on Molecular Probes products, including product bibliographies, is available from your local distributor or directly from Molecular Probes. Customers in Europe, Africa and the Middle East should contact our office in Paisley, United Kingdom. All others should contact our Technical Assistance Department in Eugene, Oregon.

Please visit our Web site — www.probes.com — for the most up-to-date information.

Molecular Probes, Inc.
29851 Willow Creek Road, Eugene, OR 97402
Phone: (541) 465-8300 • Fax: (541) 335-0504

Customer Service: 6:00 am to 4:30 pm (Pacific Time)
Phone: (541) 335-0338 • Fax: (541) 335-0305 • order@probes.com

Toll-Free Ordering for USA and Canada:
Order Phone: (800) 438-2209 • Order Fax: (800) 438-0228

Technical Assistance: 8:00 am to 4:00 pm (Pacific Time)
Phone: (541) 335-0353 • Toll-Free: (800) 438-2209
Fax: (541) 335-0238 • tech@probes.com

Invitrogen European Headquarters
Invitrogen, Ltd.
3 Fountain Drive
Inchinnan Business Park
Paisley PA4 9RF, UK
Phone: +44(0) 141 814 6100 • Fax: +44(0) 141 814 6260
Email: euroinfo@invitrogen.com
Technical Services: eurotech@invitrogen.com

Molecular Probes products are high-quality reagents and materials intended for research purposes only. These products must be used by, or directly under the supervision of, a technically qualified individual experienced in handling potentially hazardous chemicals. Please read the Material Safety Data Sheet provided for each product; other regulatory considerations may apply.

Several Molecular Probes products and product applications are covered by U.S. and foreign patents and patents pending. Our products are not available for resale or other commercial uses without a specific agreement from Molecular Probes, Inc. We welcome inquiries about licensing the use of our dyes, trademarks or technologies. Please submit inquiries by e-mail to busdev@probes.com. All names containing the designation ® are registered with the U.S. Patent and Trademark Office.

Copyright 2004, Molecular Probes, Inc. All rights reserved. This information is subject to change without notice.