pcDNA™ 3.2/V5-DEST and pcDNA™ 6.2/V5-DEST Gateway® Vectors

Gateway®-adapted destination vectors for cloning and expression of C-terminal V5 fusion proteins in mammalian cells

Catalog nos. 12489-019 and 12489-027

Version E
27 October 2010
25-0500
Table of Contents

Important Information ... v
Accessory Products ... vi

Methods ..

- Overview .. 1
- Generating an Entry Clone .. 3
- Creating an Expression Clone ... 5
- Performing the LR Recombination Reaction ... 8
- Transfection .. 12
- Expression and Analysis ... 14
- Creating Stable Cell Lines ... 16

Appendix ..

- Recipes .. 19
- Blasticidin ... 21
- Map of pcDNA™3.2/V5-DEST and pcDNA™6.2/V5-DEST ... 22
- Features of pcDNA™3.2/V5-DEST and pcDNA™6.2/V5-DEST 23
- Technical Service .. 25
- Purchaser Notification .. 27
- Gateway® Clone Distribution Policy .. 29
- References ... 30
Important Information

Gateway® Vectors

This manual is supplied with the following products.

<table>
<thead>
<tr>
<th>Product</th>
<th>Catalog no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pcDNA™3.2/V5-DEST Gateway® Vector</td>
<td>12489-019</td>
</tr>
<tr>
<td>pcDNA™6.2/V5-DEST Gateway® Vector</td>
<td>12489-027</td>
</tr>
</tbody>
</table>

The pcDNA™3.2/V5-DEST and pcDNA™6.2/V5-DEST Gateway® Vectors have been renamed to be more descriptive and to better reflect the functionality of the vector.

Shipping and Storage

The pcDNA™3.2/V5-DEST and pcDNA™6.2/V5-DEST Gateway® Vectors are shipped on wet ice. Upon receipt, store at –20°C.

Contents

The pcDNA™3.2/V5-DEST and pcDNA™6.2/V5-DEST Gateway® Vector components are listed below.

<table>
<thead>
<tr>
<th>Item</th>
<th>Concentration</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway® Destination Vector (pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST)</td>
<td>6 μg at 150 ng/μl, in TE buffer, pH 8.0 (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)</td>
<td>40 μl</td>
</tr>
<tr>
<td>Control Plasmid (pcDNA™3.2/V5/GW/CAT or pcDNA™6.2/V5/GW/CAT)</td>
<td>10 μg at 0.5 μg/μl, in TE buffer, pH 8.0 (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)</td>
<td>20 μl</td>
</tr>
</tbody>
</table>

Product Qualification

The Certificate of Analysis provides detailed quality control information for each product. Certificates of Analysis are available on our website. Go to www.invitrogen.com/support and search for the Certificate of Analysis by product lot number, which is printed on the box.
Accessory Products

Additional Products

Additional products that may be used with the pcDNA™3.2/V5-DEST and pcDNA™6.2/V5-DEST vectors are available from Invitrogen. Ordering information is provided below.

<table>
<thead>
<tr>
<th>Product</th>
<th>Amount</th>
<th>Catalog no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gateway® LR Clonase™ II Enzyme Mix</td>
<td>20 reactions</td>
<td>11791-020</td>
</tr>
<tr>
<td></td>
<td>100 reactions</td>
<td>11791-100</td>
</tr>
<tr>
<td>Tag-On-Demand™ Suppressor Supernatant</td>
<td>200 µl</td>
<td>K400-01</td>
</tr>
<tr>
<td></td>
<td>5 x 200 µl</td>
<td>K405-01</td>
</tr>
<tr>
<td>One Shot® TOP10 Chemically Competent Cells</td>
<td>10 reactions</td>
<td>C4040-10</td>
</tr>
<tr>
<td></td>
<td>20 reactions</td>
<td>C4040-03</td>
</tr>
<tr>
<td>PureLink™ HQ Mini Plasmid Purification Kit</td>
<td>100 preps</td>
<td>K2100-01</td>
</tr>
<tr>
<td>PureLink™ HiPure Plasmid Midiprep Kit</td>
<td>25 preps</td>
<td>K2100-04</td>
</tr>
<tr>
<td>Lipofectamine™ 2000</td>
<td>1.5 ml</td>
<td>11668-019</td>
</tr>
<tr>
<td></td>
<td>0.75 ml</td>
<td>11668-027</td>
</tr>
<tr>
<td>Geneticin®</td>
<td>1 g</td>
<td>11811-023</td>
</tr>
<tr>
<td></td>
<td>5 g</td>
<td>11811-031</td>
</tr>
<tr>
<td>Blasticidin</td>
<td>50 mg</td>
<td>R210-01</td>
</tr>
</tbody>
</table>

Detection of Recombinant Proteins

You can detect expression of your recombinant fusion protein using the Anti-V5 antibodies available from Invitrogen. The amount of antibody supplied is sufficient for 25 Western blots or 25 immunostaining reactions (FITC-conjugated antibody only).

<table>
<thead>
<tr>
<th>Product</th>
<th>Epitope</th>
<th>Catalog no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-V5 Antibody</td>
<td>Detects 14 amino acid epitope derived from the P and V proteins of the paramyxovirus, SV5 (Southern et al., 1991).</td>
<td>R960-25</td>
</tr>
<tr>
<td>Anti-V5-HRP Antibody</td>
<td></td>
<td>R961-25</td>
</tr>
<tr>
<td>Anti-V5-AP Antibody</td>
<td></td>
<td>R962-25</td>
</tr>
<tr>
<td>Anti-V5-FITC Antibody</td>
<td>GKPIPNPLLGLDST</td>
<td>R963-25</td>
</tr>
</tbody>
</table>
Methods

Overview

Description

pcDNA™3.2/V5-DEST and pcDNA™6.2/V5-DEST are 7.7 kb and 7.3 kb vectors, respectively, that are adapted with the Gateway® Technology, and allow high-level, constitutive expression of the gene of interest in a variety of mammalian hosts. For more information on the Gateway® Technology, see the next page.

Features

pcDNA™3.2/V5-DEST and pcDNA™6.2/V5-DEST contain the following elements:

- Human cytomegalovirus immediate-early (CMV) promoter/enhancer for high-level expression in a wide range of mammalian cells
- Two recombination sites, attR1 and attR2, downstream of the CMV promoter for recombinational cloning of the gene of interest from an entry clone
- The ccdB gene located between the two attR sites for negative selection
- Chloramphenicol resistance gene located between the two attR sites for counterselection
- The V5 epitope tag for detection using Anti-V5 antibodies
- The Herpes Simplex Virus thymidine kinase polyadenylation signal for proper termination and processing of the recombinant transcript
- f1 intergenic region for production of single-strand DNA in F plasmid-containing E. coli
- SV40 early promoter and origin for expression of the neomycin (pcDNA™3.2/V5-DEST) or Blasticidin (pcDNA™6.2/V5-DEST) resistance gene and stable propagation of the plasmid in mammalian hosts expressing the SV40 large T antigen
- Neomycin (pcDNA™3.2/V5-DEST) or Blasticidin (pcDNA™6.2/V5-DEST) resistance gene for selection of stable cell lines
- The pUC origin for high copy replication and maintenance of the plasmid in E. coli
- The ampicillin (bla) resistance gene for selection in E. coli

continued on next page
The Gateway® Technology

The Gateway® Technology is a universal cloning method that takes advantage of the site-specific recombination properties of bacteriophage lambda (Landy, 1989) to provide a rapid and highly efficient way to move your gene of interest into multiple vector systems. To express your gene of interest using Gateway® Technology, simply:

1. Clone your gene of interest into a Gateway® entry vector to create an entry clone.

2. Generate an expression clone by performing an LR recombination reaction between the entry clone and a Gateway® destination vector (e.g. pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST).

3. Transfect your expression clone into the cell line of choice for transient or stable expression of your gene of interest.

For more information on the Gateway® Technology, refer to the Gateway® Technology with Clonase™ II manual. This manual is available for downloading from our Web site (www.invitrogen.com) or by contacting Technical Service (page 25).
Generating an Entry Clone

Introduction
To recombine your gene of interest into pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST, you will need an entry clone containing the gene of interest (see below and the next page for recommendations). Many entry vectors including pENTR/D-TOPO® are available from Invitrogen to facilitate generation of entry clones. For more information, refer to our Web site (www.invitrogen.com) or contact Technical Service (page 25). Refer to the manual for the specific entry vector you are using for detailed instructions to construct an entry clone.

Tag-On-Demand™ System
The pcDNA™3.2/V5-DEST and pcDNA™6.2/V5-DEST vectors are compatible with the Tag-On-Demand™ System which allows expression of both native and C-terminally-tagged recombinant protein from the same expression construct.

The System is based on stop suppression technology originally developed by RajBhandary and colleagues (Capone et al., 1985) and consists of a recombinant adenovirus expressing a tRNA^ser suppressor. When an expression vector encoding a gene of interest with the TAG (amber stop) codon is transfected into mammalian cells, the stop codon will be translated as serine, allowing translation to continue and resulting in production of a C-terminally-tagged fusion protein.

For more information, refer to the Tag-On-Demand™ Suppressor Supernatant manual. This manual is available for downloading from our Web site (www.invitrogen.com) or contact Technical Service (page 25).

Note
If you wish to express a human gene of interest from pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST, we recommend using an Ultimate™ Human ORF (hORF) Clone available from Invitrogen. Each Ultimate™ hORF Clone is a fully sequenced clone provided in a Gateway® entry vector that is ready-to-use in an LR recombination reaction with pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST. In addition, each Ultimate™ hORF Clone contains a TAG stop codon, making it fully compatible for use in the Tag-On-Demand™ System. For more information about the Ultimate™ hORF Clones available, refer to our Web site (www.invitrogen.com) or contact Technical Service (page 25).

continued on next page
Generating an Entry Clone, continued

Kozak Consensus Sequence

Your insert should contain a Kozak translation initiation sequence with an ATG initiation codon for proper initiation of translation (Kozak, 1987; Kozak, 1991; Kozak, 1990). An example of a Kozak consensus sequence is provided below. The ATG initiation codon is shown underlined.

\[(G/A)NNATGG\]

Other sequences are possible, but the G or A at position –3 and the G at position +4 (shown in bold) illustrates the most commonly occurring consensus sequence.

Points to Consider Before Recombining

pcDNA™3.2/V5-DEST and pcDNA™6.2/V5-DEST are C-terminal fusion vectors; however, you may use these vectors to express native proteins or C-terminal fusion proteins. You may also use these vectors in the Tag-On-Demand™ System (see previous page). Consider the following when generating your entry clone.

<table>
<thead>
<tr>
<th>If you wish to...</th>
<th>Then your insert...</th>
</tr>
</thead>
</table>
| include the V5 epitope tag and NOT use the Tag-On-Demand™ System | • should NOT contain a stop codon
• should be in frame with the V5 epitope tag after recombination (see page 6 for a diagram) |
| include the V5 epitope tag for use in the Tag-On-Demand™ System | • should contain a TAG stop codon
• should be in frame with the V5 epitope tag after recombination (see page 7 for a diagram) |
| not include the V5 epitope tag | • should contain a stop codon |
Creating an Expression Clone

Introduction
After you have generated an entry clone, you will perform the LR recombination reaction to transfer the gene of interest into the pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST vector to create your expression clone. To ensure that you obtain the best results, we recommend that you read this section and the next section entitled Performing the LR Recombination Reaction (pages 8-11) before beginning.

Experimental Outline
To generate an expression clone, you will:

1. Perform an LR recombination reaction using the attL-containing entry clone and the attR-containing pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST vector.
2. Transform the reaction mixture into a suitable E. coli host.
3. Select for expression clones (refer to pages 6-7 for a diagram of the recombination region of the resulting expression clones).

Propagating the Vectors
If you wish to propagate and maintain pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST, we recommend using One Shot® ccdB Survival™ 2 T1 Phage-Resistant Cells (Catalog no. A10460) from Invitrogen for transformation. The ccdB Survival™ 2 T1 Phage-Resistant E. coli strain is resistant to CcdB effects and can support the propagation of plasmids containing the ccdB gene. To maintain the integrity of the vector, select for transformants in media containing 50–100 µg/ml ampicillin and 15–30 µg/ml chloramphenicol.

Note: Do not use general E. coli cloning strains including TOP10 or DH5α for propagation and maintenance as these strains are sensitive to CcdB effects.

continued on next page
Creating an Expression Clone, continued

Recombination Region

The recombination region of the expression clone resulting from pcDNA™3.2/V5-DEST × entry clone or pcDNA™6.2/V5-DEST × entry clone is shown below.

Features of the Recombination Region:

- Shaded regions correspond to DNA sequences transferred from the entry clone into pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST by recombination. Non-shaded regions are derived from the pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST vector.

- The underlined nucleotides flanking the shaded region correspond to bases 918 and 3161 of the pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST vector sequence.

continued on next page
Creating an Expression Clone, continued

Recombination Region for Use in the Tag-On-Demand™ System

The recombination region of the expression clone resulting from pcDNA™3.2/V5-DEST × entry clone or pcDNA™6.2/V5-DEST × entry clone is shown below.

Note: The gene of interest must contain a TAG stop codon for use in the Tag-On-Demand™ System (see page 3 for more information).

Features of the Recombination Region:

- Shaded regions correspond to DNA sequences transferred from the entry clone into pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST by recombination. Non-shaded regions are derived from the pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST vector.

- The underlined nucleotides flanking the shaded region correspond to bases 918 and 3161 of the pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST vector sequence.
Performing the LR Recombination Reaction

Introduction

Once you have obtained an entry clone containing your gene of interest, you may perform an LR recombination reaction between the entry clone and pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST, and transform the reaction mixture into a suitable E. coli host (see below) to select for an expression clone. We recommend including a negative control (no LR Clonase™ II) in your experiment to help you evaluate your results.

E. coli Host

You may use any recA, endA E. coli strain including TOP10, DH5α™, or equivalent for transformation (see page vi for ordering information). Do not transform the LR reaction mixture into E. coli strains that contain the F′ episome (e.g. TOP10F′). These strains contain the ccdA gene and will prevent negative selection with the ccdB gene.

Note

The presence of the EM7 promoter and the Blasticidin resistance gene in pcDNA™6.2/V5-DEST allows for selection of E. coli transformants using Blasticidin. For selection, use Low Salt LB agar plates containing 100 μg/ml Blasticidin (see page 19 for a recipe). For Blasticidin to be active, the salt concentration of the medium must remain low (< 90 mM) and the pH must be 7.0.

Blasticidin is available separately from Invitrogen (see page vi for ordering information). Refer to page 21 for instructions on how to prepare and store Blasticidin.

continued on next page
Performing the LR Recombination Reaction, continued

LR Clonase™ II Enzyme Mix

LR Clonase™ II enzyme mix is available separately from Invitrogen (Catalog no. 11791-020) to catalyze the LR recombination reaction. The LR Clonase™ II enzyme mix combines the proprietary enzyme formulation and 5X LR Clonase™ Reaction Buffer previously supplied as separate components in LR Clonase™ enzyme mix into an optimized single-tube format for easier set-up of the LR recombination reaction. Use the protocol provided on page 10 to perform the LR recombination reaction using LR Clonase™ II enzyme mix.

Note: You may perform the LR recombination reaction using LR Clonase™ enzyme mix, if desired. To use LR Clonase™ enzyme mix, follow the protocol provided with the product. **Do not** use the protocol for LR Clonase™ II enzyme mix as reaction conditions differ.

Materials Needed

You should have the following materials on hand before beginning:

- Purified plasmid DNA of your entry clone (50–150 ng/μl in TE, pH 8.0)
- pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST (150 ng/μl in TE, pH 8.0)
- LR Clonase™ II enzyme mix (Invitrogen, Catalog no. 11791-020; keep at –20°C until immediately before use)
- TE Buffer, pH 8.0 (10 mM Tris-HCl, pH 8.0, 1 mM EDTA)
- 2 μg/μl Proteinase K solution (supplied with LR Clonase™ II enzyme mix; thaw and keep on ice until use)
- pENTR™-gus (supplied with LR Clonase™ II enzyme mix; use as a control for the LR reaction; 50 ng/μl)
- Appropriate competent *E. coli* host and growth media for expression
- S.O.C. Medium
- LB agar plates containing 100 μg/ml ampicillin or Low Salt LB plates containing 100 μg/ml Blasticidin)

continued on next page
Performing the LR Recombination Reaction, continued

Setting Up the LR Reaction

Follow this procedure to perform the LR reaction between your entry clone and a destination vector. To include a negative control, set up a second sample reaction, but omit the LR Clonase™ II enzyme mix.

1. Add the following components to 1.5 ml microcentrifuge tubes at room temperature and mix.

<table>
<thead>
<tr>
<th>Component</th>
<th>Sample</th>
<th>Positive Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry clone (50–150 ng/rxn)</td>
<td>1–7 µl</td>
<td>--</td>
</tr>
<tr>
<td>Destination vector (150 ng/µl)</td>
<td>1 µl</td>
<td>1 µl</td>
</tr>
<tr>
<td>pENTR™-gus (50 ng/µl)</td>
<td>--</td>
<td>2 µl</td>
</tr>
<tr>
<td>TE Buffer, pH 8.0</td>
<td>to 8 µl</td>
<td>5 µl</td>
</tr>
</tbody>
</table>

2. Remove the LR Clonase™ II enzyme mix from −20°C and thaw on ice (~ 2 minutes).

3. Vortex the LR Clonase™ II enzyme mix briefly twice (2 seconds each time).

4. To each sample above, add 2 µl of LR Clonase™ II enzyme mix. Mix well by pipetting up and down.

 Reminder: Return LR Clonase™ II enzyme mix to −20°C immediately after use.

5. Incubate reactions at 25°C for 1 hour.

 Note: Extending the incubation time to 18 hours typically yields more colonies.

6. Add 1 µl of the Proteinase K solution to each reaction. Incubate for 10 minutes at 37°C.

7. Transform 1 µl of the LR recombination reaction into a suitable E. coli host (follow the manufacturer’s instructions) and select for expression clones.

 Note: You may store the LR reaction at −20°C for up to 1 week before transformation, if desired.

continued on next page
Creating an Expression Clone, continued

What You Should See

If you use *E. coli* cells with a transformation efficiency of \(\geq 1 \times 10^8 \text{ cfu} / \mu\text{g} \), the LR reaction should give > 5,000 colonies if the entire reaction is transformed and plated.

Confirming the Expression Clone

The *ccdB* gene mutates at a very low frequency, resulting in a very low number of false positives. True expression clones will be ampicillin-resistant and chloramphenicol-sensitive. Transformants containing a plasmid with a mutated *ccdB* gene will be both ampicillin- and chloramphenicol-resistant. To check your putative expression clone, test for growth on LB plates containing 30 \(\mu\text{g} / \text{ml} \) chloramphenicol. A true expression clone will not grow in the presence of chloramphenicol.

Sequencing

To confirm that your gene of interest is in frame with the C-terminal V5 epitope, you may sequence your expression construct, if desired. We suggest using the following primer sequences. Refer to the diagram on page 6 for the location of the primer binding sites.

For your convenience, Invitrogen offers a custom primer synthesis service. For more information, refer to our Web site (www.invitrogen.com) or contact Technical Service (page 25).

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>T7 Promoter</td>
<td>5’-TAATACGACTCACTATAGGG-3’</td>
</tr>
<tr>
<td>V5 Reverse</td>
<td>5’-ACCGAGGAGAGGGTGAGGAT-3’</td>
</tr>
</tbody>
</table>
Transfection

Introduction

This section provides general information for transfecting your expression clone into the mammalian cell line of choice. We recommend that you include a positive control vector (pcDNA™3.2/V5/GW/CAT or pcDNA™6.2/V5/GW/CAT) and a mock transfection (negative control) in your experiments to evaluate your results.

Plasmid Preparation

Once you have generated your expression clone, you must isolate plasmid DNA for transfection. Plasmid DNA for transfection into eukaryotic cells must be clean and free contamination with from phenol and sodium chloride. Contaminants will kill the cells, and salt will interfere with lipid complexing, decreasing transfection efficiency. We recommend isolating plasmid DNA using the PureLink™ HQ Mini Plasmid Purification Kit (Catalog no. K2100-01), the PureLink™ HiPure Plasmid Midiprep Kit (Catalog no. K2100-04), or CsCl gradient centrifugation.

Methods of Transfection

For established cell lines (e.g. HeLa), consult original references or the supplier of your cell line for the optimal method of transfection. We recommend that you follow exactly the protocol for your cell line. Pay particular attention to medium requirements, when to pass the cells, and at what dilution to split the cells. Further information is provided in Current Protocols in Molecular Biology (Ausubel et al., 1994).

Methods for transfection include calcium phosphate (Chen and Okayama, 1987; Wigler et al., 1977), lipid-mediated (Felgner et al., 1989; Felgner and Ringold, 1989) and electroporation (Chu et al., 1987; Shigekawa and Dower, 1988). For high efficiency transfection in a broad range of mammalian cell lines, we recommend using Lipofectamine™ 2000 Reagent (Catalog no. 11668-027) available from Invitrogen. For more information about Lipofectamine™ 2000 and other transfection reagents, refer to our Web site (www.invitrogen.com) or contact Technical Service (page 25).

continued on next page
Transfection, continued

Positive Control

pcDNA™3.2/V5/GW/CAT or pcDNA™6.2/V5/GW/CAT is provided as a positive control vector for mammalian cell transfection and expression (see page 24 for a map) and may be used to optimize recombinant protein expression levels in your cell line. These vectors allow expression of a C-terminally tagged chloramphenicol acetyl transferase (CAT) fusion protein that may be detected by Western blot or functional assay.

To propagate and maintain the plasmid:

1. Prepare a 1:50 dilution of the positive control vector in sterile water (i.e. 1 μl vector + 49 μl water) for a 10 ng/μl stock solution. Use 10 ng of the stock solution to transform a recA, endA E. coli strain like TOP10, DH5α, JM109, or equivalent.

2. Select transformants on LB agar plates containing 50–100 μg/ml ampicillin.

3. Prepare a glycerol stock of a transformant containing plasmid for long-term storage.
Expression and Analysis

Introduction

Expression of your gene of interest from the expression clone can be performed in either transiently transfected cells or stable cell lines (see page 16 for guidelines to create stable cell lines). You may use a functional assay or a Western blot analysis to detect your recombinant protein (see below).

Preparing Cell Lysates

To detect your fusion protein by Western blot, you will need to prepare a cell lysate from transfected cells. A sample protocol is provided below. Other protocols are suitable. To lyse cells:

1. Wash cell monolayer (~5 x 10⁵ to 1 x 10⁶ cells) once with phosphate-buffered saline (PBS; Invitrogen Catalog no. 10010-023).

2. Scrape cells into 1 ml PBS and pellet the cells at 1500 x g for 5 minutes.

3. Resuspend in 50 μl Cell Lysis Buffer (see page 20 for a recipe). Other cell lysis buffers are suitable. Vortex.

4. Incubate cell suspension at 37°C for 10 minutes to lyse the cells. Note: You may prefer to lyse the cells at room temperature or on ice if degradation of your protein is a potential problem.

5. Centrifuge the cell lysate at 10,000 x g for 10 minutes at +4°C to pellet nuclei and transfer the supernatant to a fresh tube. Assay the lysate for protein concentration. Note: Do not use protein assays utilizing Coomassie Blue or other dyes. NP-40 interferes with the binding of the dye with the protein.

6. Add SDS-PAGE sample buffer (see page 20 for a recipe) to a final concentration of 1X and boil the sample for 5 minutes.

7. Load 20 μg of lysate onto an SDS-PAGE gel and electrophorese. Use the appropriate percentage of acrylamide to resolve your fusion protein.

continued on next page
Expression and Analysis, continued

Polyacrylamide Gel Electrophoresis
To facilitate separation and visualization of your recombinant fusion protein by polyacrylamide gel electrophoresis, a wide range of pre-cast NuPAGE® and Novex® Tris-Glycine polyacrylamide gels and electrophoresis apparatus are available from Invitrogen. For more information, refer to our Web site (www.invitrogen.com) or contact Technical Service (page 25).

Detecting Recombinant Fusion Proteins
To detect expression of your recombinant fusion protein by Western blot analysis, you may use the Anti-V5 antibodies available from Invitrogen (see page vi for ordering information) or an antibody to your protein of interest. In addition, the Positope™ Control Protein (Catalog no. R900-50) is available from Invitrogen for use as a positive control for detection of fusion proteins containing a V5 epitope. The ready-to-use WesternBreeze® Chromogenic Kits and WesternBreeze® Chemiluminescent Kits are available from Invitrogen to facilitate detection of antibodies by colorimetric or chemiluminescent methods. For more information, refer to our Web site (www.invitrogen.com) or contact Technical Service (page 25).

Note
The C-terminal peptide containing the V5 epitope will add approximately 4 kDa to your protein.

Detecting CAT Protein
If you use the provided positive control vector in your experiment, you may assay for CAT expression using your method of choice. Note that CAT is fused to the C-terminal V5 epitope tag so you can use Western blot analysis and an Anti-V5 antibody to detect expression of CAT. Other commercial kits are available for assaying CAT expression. The molecular weight of the CAT fusion protein is approximately 30 kDa.
Creating Stable Cell Lines

Introduction

The pcDNA™3.2/V5-DEST and pcDNA™6.2/V5-DEST vectors contain the neomycin and Blasticidin resistance genes, respectively, to allow selection of stable cell lines. If you wish to create stable cell lines, transfect your construct into the mammalian cell line of choice and select for foci using Geneticin® (pcDNA™3.2/V5-DEST only) or Blasticidin (pcDNA™6.2/V5-DEST only). General information and guidelines are provided below.

To obtain stable transfectants, we recommend that you linearize your pcDNA™3.2/V5-DEST or pcDNA™6.2/V5-DEST construct before transfection. While linearizing the vector may not improve the efficiency of transfection, it increases the chances that the vector does not integrate in a way that disrupts elements necessary for expression in mammalian cells. To linearize your construct, cut at a unique site that is not located within a critical element or within your gene of interest.

Geneticin®

Geneticin® blocks protein synthesis in mammalian cells by interfering with ribosomal function. It is an aminoglycoside, similar in structure to neomycin, gentamycin, and kanamycin. Expression in mammalian cells of the bacterial aminoglycoside phosphotransferase gene (APH), derived from Tn5, results in detoxification of Geneticin® (Southern and Berg, 1982).

Blasticidin

Blasticidin S HCl is a nucleoside antibiotic isolated from Streptomyces griseochromogenes which inhibits protein synthesis in both prokaryotic and eukaryotic cells (Takeuchi et al., 1958; Yamaguchi et al., 1965). Resistance is conferred by expression of either one of two blasticidin S deaminase genes: bsd from Aspergillus terreus (Kimura et al., 1994) or bsr from Bacillus cereus (Izumi et al., 1991). These deaminases convert blasticidin S to a nontoxic deaminohydroxy derivative (Izumi et al., 1991).
Determining Antibiotic Sensitivity

To successfully generate a stable cell line expressing your protein of interest, you need to determine the minimum concentration of antibiotic (Geneticin® or Blasticidin) required to kill your untransfected host cell line. Test a range of concentrations (see protocol below) to ensure that you determine the minimum concentration necessary for your cell line. Refer to page 21 for instructions on how to prepare and store Blasticidin.

1. Plate or split a confluent plate so the cells will be approximately 25% confluent. For each antibiotic, prepare a set of 6–7 plates. Add the following concentrations of antibiotic to each plate:
 - For Blasticidin selection, test 0, 1, 3, 5, 7.5, and 10 μg/ml Blasticidin
 - For Geneticin® selection, test 0, 50, 125, 250, 500, 750, and 1000 μg/ml Geneticin®.

2. Replenish the selective media every 3-4 days, and observe the percentage of surviving cells.

3. Count the number of viable cells at regular intervals to determine the appropriate concentration of antibiotic that prevents growth within 1–3 weeks after addition of the antibiotic.

Geneticin® Selection Guidelines

Once you have determined the appropriate Geneticin® concentration to use for selection, you can generate a stable cell line expressing your pcDNA™3.2/V5-DEST construct. Geneticin® is available separately from Invitrogen (see page vi for ordering information). Use as follows:

1. Prepare Geneticin® in a buffered solution (e.g. 100 mM HEPES, pH 7.3).

2. Use the predetermined concentration of Geneticin® in complete medium.

3. Calculate concentration based on the amount of active drug.

4. Cells will divide once or twice in the presence of lethal doses of Geneticin®, so the effects of the drug take several days to become apparent. Complete selection can take from 2 to 3 weeks of growth in selective medium.
Creating Stable Cell Lines, continued

Blasticidin Selection Guidelines

Once you have determined the appropriate Blasticidin concentration to use for selection, you can generate a stable cell line expressing your pcDNA™6.2/V5-DEST construct. Blasticidin is available separately from Invitrogen (see page vi for ordering information). Use as follows:

1. Prepare a stock solution of 5–10 mg/ml of Blasticidin in sterile water. Filter-sterilize the solution.

2. Use the predetermined concentration of Blasticidin in complete medium.

3. Cells differ in their susceptibility to Blasticidin. Complete selection can take up to 10 days of growth in selective medium.

Refer to page 21 for instructions on how to prepare and store Blasticidin.
Appendix

Recipes

LB (Luria-Bertani) Medium and Plates

Composition:
1.0% Tryptone
0.5% Yeast Extract
1.0% NaCl
pH 7.0

1. For 1 liter, dissolve 10 g tryptone, 5 g yeast extract, and 10 g NaCl in 950 ml deionized water.
2. Adjust the pH of the solution to 7.0 with NaOH and bring the volume up to 1 liter.
3. Autoclave on liquid cycle for 20 minutes at 15 psi. Allow solution to cool to 55°C and add antibiotic if needed.
4. Store at room temperature or at +4°C.

LB agar plates
1. Prepare LB medium as above, but add 15 g/L agar before autoclaving.
2. Autoclave on liquid cycle for 20 minutes at 15 psi.
3. After autoclaving, cool to ~55°C, add antibiotic if needed, and pour into 10 cm plates.
4. Let harden, then invert and store at +4°C.

Low Salt LB Medium with Blasticidin

Low Salt LB Medium:
10 g Tryptone
5 g NaCl
5 g Yeast Extract

1. Combine the dry reagents above and add deionized, distilled water to 950 ml. Adjust pH to 7.0 with 1 N NaOH. Bring the volume up to 1 liter. For plates, add 15 g/L agar before autoclaving.
2. Autoclave on liquid cycle at 15 psi and 121°C for 20 minutes.
3. Allow the medium to cool to at least 55°C before adding the Blasticidin to 100 μg/ml final concentration.
4. Store plates at +4°C in the dark. Plates containing Blasticidin are stable for up to 2 weeks.

continued on next page
Cell Lysis Buffer

50 mM Tris, pH 7.8
150 mM NaCl
1% Nonidet P-40

1. This solution can be prepared from the following common stock solutions. For 100 ml, combine
 - 1 M Tris base 5 ml
 - 5 M NaCl 3 ml
 - Nonidet P-40 1 ml
2. Bring the volume up to 90 ml with deionized water and adjust the pH to 7.8 with HCl.
3. Bring the volume up to 100 ml. Store at room temperature.

To prevent proteolysis, you may add 1 mM PMSF, 1 μM leupeptin, or 0.1 μM aprotinin before use.

4X SDS-PAGE Sample Buffer

1. Combine the following reagents:
 - 0.5 M Tris-HCl, pH 6.8 5 ml
 - Glycerol (100%) 4 ml
 - β-mercaptoethanol 0.8 ml
 - Bromophenol Blue 0.04 g
 - SDS 0.8 g
2. Bring the volume to 10 ml with sterile water.
3. Aliquot and freeze at –20°C until needed.
Blasticidin

Molecular Weight, Formula, and Structure

The formula for Blasticidin S is C_{17}H_{26}N_{8}O_{5}-HCl, and the molecular weight is 458.9. The diagram below shows the structure of Blasticidin.

![Blasticidin Structure](image)

Handling Blasticidin

Always wear gloves, mask, goggles, and protective clothing (*e.g.* a laboratory coat) when handling Blasticidin. Weigh out Blasticidin and prepare solutions in a hood.

Preparing and Storing Stock Solutions

Blasticidin may be obtained separately from Invitrogen (Catalog no. R210-01) in 50 mg aliquots. Blasticidin is soluble in water. Sterile water is generally used to prepare stock solutions of 5 to 10 mg/ml.

- Dissolve Blasticidin in sterile water and filter-sterilize the solution.
- Aliquot in small volumes suitable for one time use (see next to last point below) and freeze at –20°C for long-term storage or store at +4°C for short-term storage.
- Aqueous stock solutions are stable for 1–2 weeks at +4°C and 6–8 weeks at –20°C.
- pH of the aqueous solution should be 7.0 to prevent inactivation of Blasticidin.
- Do not subject stock solutions to freeze/thaw cycles (*do not store in a frost-free freezer*).
- Upon thawing, use what you need and store the thawed stock solution at +4°C for up to 2 weeks.
- Medium containing Blasticidin may be stored at +4°C for up to 2 weeks.
Map of pcDNA™ 3.2/V5-DEST and pcDNA™ 6.2/V5-DEST

The map below shows the elements of pcDNA™ 3.2/V5-DEST and pcDNA™ 6.2/V5-DEST. DNA from the entry clone replaces the region between bases 918 and 3161. The complete sequences of these vectors are available for downloading from our Web site (www.invitrogen.com) or by contacting Technical Service (page 25).

![Map of pcDNA™ 3.2/V5-DEST and pcDNA™ 6.2/V5-DEST](image_url)

Map

Comments for:

<table>
<thead>
<tr>
<th></th>
<th>pcDNA™ 3.2/V5-DEST 7711 nucleotides</th>
<th>pcDNA™ 6.2/V5-DEST 7341 nucleotides</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV promoter:</td>
<td>232-819</td>
<td>232-819</td>
</tr>
<tr>
<td>T7 promoter/priming site:</td>
<td>863-882</td>
<td>863-882</td>
</tr>
<tr>
<td>attR1 site:</td>
<td>911-1035</td>
<td>911-1035</td>
</tr>
<tr>
<td>ccdB gene (c):</td>
<td>1464-1769</td>
<td>1464-1769</td>
</tr>
<tr>
<td>Chloramphenicol resistance gene (c):</td>
<td>2111-2770</td>
<td>2111-2770</td>
</tr>
<tr>
<td>attR2 site:</td>
<td>3051-3175</td>
<td>3051-3175</td>
</tr>
<tr>
<td>V5 epitope:</td>
<td>3201-3242</td>
<td>3201-3242</td>
</tr>
<tr>
<td>V5 reverse priming site:</td>
<td>3210-3230</td>
<td>3210-3230</td>
</tr>
<tr>
<td>TK polyadenylation signal:</td>
<td>3269-3540</td>
<td>3269-3540</td>
</tr>
<tr>
<td>f1 origin:</td>
<td>3576-4004</td>
<td>3576-4004</td>
</tr>
<tr>
<td>SV40 early promoter and origin:</td>
<td>4031-4339</td>
<td>4031-4339</td>
</tr>
<tr>
<td>Neomycin resistance gene:</td>
<td>4414-5208</td>
<td>---</td>
</tr>
<tr>
<td>EM7 promoter:</td>
<td>---</td>
<td>4394-4460</td>
</tr>
<tr>
<td>Blasticidin resistance gene:</td>
<td>---</td>
<td>4461-4859</td>
</tr>
<tr>
<td>SV40 early polyadenylation signal:</td>
<td>5384-5514</td>
<td>5017-5147</td>
</tr>
<tr>
<td>pUC origin (c):</td>
<td>5897-6570</td>
<td>5530-6200</td>
</tr>
<tr>
<td>Ampicillin (bla) resistance gene (c):</td>
<td>6715-7575</td>
<td>6345-7205</td>
</tr>
<tr>
<td>bla promoter (c):</td>
<td>7576-7674</td>
<td>7206-7304</td>
</tr>
</tbody>
</table>

(c) = complementary strand

continued on next page
Features of pcDNA™ 3.2/V5-DEST and pcDNA™ 6.2/V5-DEST

Features pcDNA™ 3.2/V5-DEST (7711 bp) and pcDNA™ 6.2/V5-DEST (7341 bp) contain the following elements. All features have been functionally tested.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human cytomegalovirus (CMV) immediate-early promoter/enhancer</td>
<td>Allows efficient, high-level expression of your recombinant protein (Andersson et al., 1989; Boshart et al., 1985; Nelson et al., 1987)</td>
</tr>
<tr>
<td>T7 promoter/priming site</td>
<td>Allows in vitro transcription in the sense orientation and sequencing through the insert</td>
</tr>
<tr>
<td>attR1 and attR2 sites</td>
<td>Allows recombinational cloning of the gene of interest from an entry clone</td>
</tr>
<tr>
<td>ccdB gene</td>
<td>Allows negative selection of plasmid</td>
</tr>
<tr>
<td>Chloramphenicol resistance gene</td>
<td>Allows counterselection of plasmid</td>
</tr>
<tr>
<td>V5 epitope</td>
<td>Allows detection of the recombinant fusion protein by the Anti-V5 antibodies (Southern et al., 1991).</td>
</tr>
<tr>
<td>V5 reverse priming site</td>
<td>Allows sequencing of the insert</td>
</tr>
<tr>
<td>Herpes Simplex Virus Thymidine Kinase (TK) polyadenylation signal</td>
<td>Allows efficient transcription termination and polyadenylation of mRNA (Cole and Stacy, 1985)</td>
</tr>
<tr>
<td>f1 origin</td>
<td>Allows rescue of single-stranded DNA</td>
</tr>
<tr>
<td>SV40 early promoter and origin</td>
<td>Allows efficient, high-level expression of the neomycin or Blasticidin resistance gene and episomal replication in cells expressing the SV40 large T antigen</td>
</tr>
<tr>
<td>Neomycin resistance gene (pcDNA™ 3.2/V5-DEST only)</td>
<td>Allows selection of stable transfectants in mammalian cells (Southern and Berg, 1982)</td>
</tr>
<tr>
<td>EM7 promoter (pcDNA™ 6.2/V5-DEST only)</td>
<td>Allows expression of the Blasticidin resistance gene in E. coli</td>
</tr>
<tr>
<td>Blasticidin (bsd) resistance gene (pcDNA™ 6.2/V5-DEST only)</td>
<td>Allows selection of stable transfectants in mammalian cells (Kimura et al., 1994)</td>
</tr>
<tr>
<td>SV40 early polyadenylation signal</td>
<td>Allows efficient transcription termination and polyadenylation of mRNA</td>
</tr>
<tr>
<td>pUC origin</td>
<td>Allows high-copy number replication and growth in E. coli</td>
</tr>
<tr>
<td>Ampicillin (bla) resistance gene (β-lactamase)</td>
<td>Allows selection of transformants in E. coli</td>
</tr>
</tbody>
</table>
The molecular weight of the CAT fusion protein is ~30 kDa.

C-terminal V5 epitope and does not contain a stop codon.

The map below shows the elements of pcDNA™3.2/V5/GW/CAT and pcDNA™6.2/V5/GW/CAT. The complete sequences of these vectors are available for downloading from our Web site (www.invitrogen.com) or by contacting Technical Service (page 25).
Technical Service

World Wide Web
Visit the Invitrogen website at www.invitrogen.com for:

- Technical resources, including manuals, vector maps and sequences, application notes, MSDSs, FAQs, formulations, citations, handbooks, etc.
- Complete technical support contact information
- Access to the Invitrogen Online Catalog
Additional product information and special offers

Contact Us
For more information or technical assistance, call, write, fax, or email. Additional international offices are listed on our Web page (www.invitrogen.com).

Corporate Headquarters: Invitrogen Ltd
Invitrogen Corporation
5791 Van Allen Way
Carlsbad, CA 92008 USA
Tel: 1 760 603 7200
Tel (Toll Free): 1 800 955 6288
Fax: 1 760 602 6500
E-mail: techsupport@invitrogen.com

European Headquarters:
Invitrogen Ltd
Inchinnan Business Park
3 Fountain Drive
Paisley PA4 9RF, UK
Tel: +44 (0) 141 814 6100
Tech Fax: +44 (0) 141 814 6117
E-mail: eurotech@invitrogen.com

MSDS
Material Safety Data Sheets (MSDSs) are available on our website at www.invitrogen.com/msds.

continued on next page
Technical Service, continued

Certificate of Analysis

The Certificate of Analysis (CofA) provides detailed quality control information for each product. CofAs are available on our website at www.invitrogen.com/support, and are searchable by product lot number, which is printed on each box.

Limited Warranty

Invitrogen is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about an Invitrogen product or service, contact our Technical Service Representatives.

Invitrogen warrants that all of its products will perform according to specifications stated on the certificate of analysis. The company will replace, free of charge, any product that does not meet those specifications. This warranty limits Invitrogen Corporation’s liability only to the cost of the product. No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. Invitrogen reserves the right to select the method(s) used to analyze a product unless Invitrogen agrees to a specified method in writing prior to acceptance of the order.

Invitrogen makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore Invitrogen makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, please report it to our Technical Service Representatives.

Invitrogen assumes no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.
Purchaser Notification

Introduction

Use of the pcDNA™3.2/V5-DEST and pcDNA™6.2/V5-DEST Gateway® Vectors is covered under the licenses detailed below.

Limited Use Label License No. 19: Gateway® Cloning Products

The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for profit entity). The purchase of this product does not convey a license under any method claims in the foregoing patents or patent applications, or to use this product with any recombination sites other than those purchased from Life Technologies Corporation or its authorized distributor. The right to use methods claimed in the foregoing patents or patent applications with this product for research purposes only can only be acquired by the use of ClonaseTM purchased from Life Technologies Corporation or its authorized distributors. The buyer cannot modify the recombination sequence(s) contained in this product for any purpose. The buyer cannot sell or otherwise transfer (a) this product, (b) its components, or (c) materials made by the employment of this product or its components to a third party or otherwise use this product or its components or materials made by the employment of this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the employment of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Notwithstanding the preceding, any buyer who is employed in an academic or government institution may transfer materials made with this product to a third party who has a license from Life Technologies under the patents identified above to distribute such materials. Transfer of such materials and/or information to collaborators does not convey rights to practice any methods claimed in the foregoing patents or patent applications. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research.

continued on next page
Purchaser Notification, continued

Life Technologies Corporation will not assert a claim against the buyer of infringement of the above patents based upon the manufacture, use or sale of a therapeutic, clinical diagnostic, vaccine or prophylactic product developed in research by the buyer in which this product or its components was employed, provided that none of (i) this product, (ii) any of its components, or (iii) a method claim of the foregoing patents, was used in the manufacture of such product. Life Technologies Corporation will not assert a claim against the buyer of infringement of the above patents based upon the use of this product to manufacture a protein for sale, provided that no method claim in the above patents was used in the manufacture of such protein. If the purchaser is not willing to accept the limitations of this limited use statement, Life Technologies is willing to accept return of the product with a full refund. For information on purchasing a license to

For additional information about Invitrogen’s policy for the use and distribution of Gateway® clones, see the section entitled Gateway® Clone Distribution Policy, page 29.

Blasticidin and the blasticidin resistance gene (bsd) are the subject of U.S. Patent No. 5,527,701 sold under patent license for research purposes only. For information on purchasing a license to this product for purposes other than research, contact Licensing Department, Life Technologies Corporation, 5791 Van Allen Way, Carlsbad, California 92008. Phone (760) 603-7200. Fax (760) 602-6500.
Gateway® Clone Distribution Policy

Introduction
The information supplied in this section is intended to provide clarity concerning Invitrogen’s policy for the use and distribution of cloned nucleic acid fragments, including open reading frames, created using Invitrogen’s commercially available Gateway® Technology.

Gateway® Entry Clones
Invitrogen understands that Gateway® entry clones, containing attL1 and attL2 sites, may be generated by academic and government researchers for the purpose of scientific research. Invitrogen agrees that such clones may be distributed for scientific research by non-profit organizations and by for-profit organizations without royalty payment to Invitrogen.

Gateway® Expression Clones
Invitrogen also understands that Gateway® expression clones, containing attB1 and attB2 sites, may be generated by academic and government researchers for the purpose of scientific research. Invitrogen agrees that such clones may be distributed for scientific research by academic and government organizations without royalty payment to Invitrogen. Organizations other than academia and government may also distribute such Gateway® expression clones for a nominal fee ($10 per clone) payable to Invitrogen.

Additional Terms and Conditions
We would ask that such distributors of Gateway® entry and expression clones indicate that such clones may be used only for research purposes, that such clones incorporate the Gateway® Technology, and that the purchase of Gateway® Clonase™ from Invitrogen is required for carrying out the Gateway® recombinational cloning reaction. This should allow researchers to readily identify Gateway® containing clones and facilitate their use of this powerful technology in their research. Use of Invitrogen’s Gateway® Technology, including Gateway® clones, for purposes other than scientific research may require a license and questions concerning such commercial use should be directed to Invitrogen’s licensing department at 760-603-7200.
References

continued on next page
References, continued

©2002–2008, 2010 Invitrogen Corporation. All rights reserved.

For research use only. Not intended for any animal of human therapeutic or diagnostic use.