vanB genes, which encode resistance to vancomycin. VRE are therefore Enterococcus faecalis and E. faecium, can harbour transmissible vanA and vanB genes to other micro-organisms and the threat of clinical infections with VRE in susceptible patient groups, prevention and control measures are critical.

Results

VRE Agar showed markedly better performance than chromID VRE Agar when samples were directly plated and comparable performance when samples where broth enriched.

Introduction

VRE were first reported in Australia in 1994. The two most common species, Enterococcus faecalis and E. faecium, can encode resistance to vancomycin. VRE are therefore significant nosocomial pathogens, and may cause serious infections, including bacteremia. Because of the ability of VRE to transfer antibiotic resistance factors to other micro-organisms and the threat of clinical infections with VRE in susceptible patient groups, prevention and control measures are critical.

VRE Agar is a chromogenic screening medium for the detection of VRE from directly collected samples. This evaluation was performed by a medical pathology laboratory in South Australia on behalf of Thermo Fisher Scientific (Microbiology), UK.

Methods

0.5 McFarland suspensions of 114 VRE isolates previously isolated from clinical samples were prepared using 0.9% sterile saline. A 25 µl aliquot of each suspension was streaked onto VRE Agar and chromID VRE Agar.

Three hundred and seventy rectal swabs were emulsified in 0.9% sterile saline and 25 µl aliquots were streaked onto both agars.

Two hundred and twenty faecal samples were prepared by making (approximately) 10% suspensions in 0.9% sterile saline. Twenty five microlitre aliquots were streaked onto both agars.

A portion of each remaining swab/faecal suspension was also inoculated into 10 ml Selective Enrichment VRE Broth (bioMérieux) and incubated at 35°C for up to 48 h. Twenty five microlitre aliquots were then subcultured onto VRE Agar and chromID VRE Agar.

All plates were incubated at 35°C and read at 20-24 h and 48 h.

Results

Of the 114 vancomycin-resistant E. faecium and E. faecalis isolates, 108 grew on VRE Agar (inclusivity of 94.7%) and 105 on chromID VRE Agar (inclusivity of 92.1%) at 24 h. At 48 h, both agars showed growth of all 114 isolates (inclusivity of 100%).

Conclusion

Brilliance VRE Agar showed markedly better sensitivity at 24 h than chromID VRE Agar and has proven to be a highly sensitive and specific medium for the detection of VRE from clinical samples. Brilliance VRE Agar produced notably fewer false positive results than chromID VRE Agar when samples were directly plated and broth-enriched, thus reducing the number of additional confirmation procedures. Reliable and accurate results were available within 24 h when using Brilliance VRE Agar, allowing rapid initiation of infection control measures and patient treatment.

Acknowledgements

This evaluation was performed by a medical pathology laboratory in South Australia on behalf of Thermo Fisher Scientific (Microbiology), UK.

References

