Comparison and Optimization of First and Second Generation Quadrupole Dual Cell Linear Ion Trap Orbitrap MS for Glycopeptide Analysis

Julian Saba1,2, Sergei Snovida3, Christa Feasley4
1Thermo Fisher Scientific, San Jose, CA, USA; 2Thermo Fisher Scientific, Mississauga, ON, Canada; 3Thermo Fisher Scientific, Rockford, IL, USA; 4Thermo Fisher Scientific, West Palm Beach, FL, USA

Overview

Purpose: To optimize instrument parameters for the Thermo Scientific\texttrademark Orbitrap Fusion\texttrademark Lumos \textregistered MS and compare performance against the Thermo Scientific\texttrademark Orbitrap Fusion\texttrademark MS for intact glycopeptide analysis.

Methods: Glycopeptides enriched from various sources were analyzed on the Orbitrap Fusion Lumos MS and Orbitrap Fusion MS. Multiple instrumental parameters were tested to maximize intact glycopeptide identifications. Data analysis were performed using Byonic\textregistered software.

Results: Improvement in performance for intact glycopeptide analysis was observed on the Orbitrap Fusion Lumos MS relative to the Orbitrap Fusion MS.

Introduction

Large scale intact glycopeptide analysis remains challenging due to complexities associated with the glycopeptide structure. Not only must one sequence the peptide backbone, but glycosylation site localization and glycan composition are also required for intact glycopeptide analysis. The challenge is further compounded by the fact that traditional fragmentations are not ideal for glycopeptide sequencing. The emergence of electron-transfer dissociation (ETD) and by extension electron-transfer and higher-energy collision dissociation (EThC\textsubscript{D}) have alleviated a lot of these issues. Here we present a performance evaluation comparison of first and second generation quadrupole dual cell linear ion trap Orbitrap hybrid mass spectrometers (Orbitrap Fusion Lumos MS and Orbitrap Fusion MS) for glycopeptide analysis. Parameters and workflows will be presented that highlight large scale glycoproteomics.

Methods

Glycopeptides were enriched from human serum and HeLa cell lysates digests using strong anion exchange (SAX) columns. The enriched glycopeptides were analyzed using a Thermo Scientific\textregistered EASY-nLC\textregistered 1000 with a Thermo Scientific\texttrademark C18 PepMap\textregistered column (2um, 100A, 75umx50 cm) coupled to an Orbitrap Fusion Lumos MS and Orbitrap Fusion MS. Various ETD reaction times, AGC target values, isolation windows, supplemental activation collision energy and RF were tested to maximize glycopeptide identifications. Data analysis were performed using Byonic software (ProteinMetrics Inc.).

Results

ETD is ideal for intact glycopeptide analysis due to the fact that it is a nonergodic type of dissociation. ETD produces extensive fragmentation of the peptide backbone enabling sequencing of the peptide while preserving glycans on the peptide backbone. This allows for unambiguous assignment of the glycosylation sites. Our initial experiments focused on optimizing ETD parameters to improve glycopeptide data on Orbitrap Fusion Lumos MS. Typically, longer ETD reaction times are needed for glycopeptides relative to conventional peptides. Various ETD reaction times, fixed or varied, dependent upon charge states were tested to maximize spectral quality, a crucial aspect of intact glycopeptide analysis.
In general preset calibrated ETD reaction times were suitable for intact N-linked glycopeptide analysis. These are values that can be optimized infusing angiotensin into the mass spectrometer. However, longer reaction times for glycopeptides is ideal as it can significantly improve spectral quality (Figure 2). Which can increase confidence for glycosylation site localization.

Figure 2. Comparison of the quality of spectrum between Angiotensin calibrated ETD reaction time and Fixed ETD reaction time of 100ms. (a) Comparison of Byonic score for 246 glycopeptides common between the two runs. (b) Example of spectral quality

In total, 11 parameters were tested with 21 individual runs to maximize performance on the Orbitrap Fusion Lumos MS. After optimization, experiments were conducted on both the Orbitrap Fusion MS and Orbitrap Fusion Lumos MS to examine performance of the platforms relative to each other. Human serum glycopeptides were used in the comparison. All data were acquired using the product ion triggered approach (HCD-pd-ETD, HCD-pd-EThcD). In our ETD comparison, Orbitrap Fusion Lumos MS identified 9% more unique glycopeptides relative to Orbitrap Fusion MS (Figure 3a). In the EThcD comparison, Orbitrap Fusion Lumos MS identified 43% more unique glycopeptides than Orbitrap Fusion MS (Figure 3b). Comparison of EThcD to ETD within Orbitrap Fusion Lumos MS data resulted in 49% more unique glycopeptides identified by EThcD over ETD (Figure 4). Closer examination of the data showed that the increase in identification by Orbitrap Fusion Lumos MS and EThcD came from large glycopeptides which are challenging in mass spectrometry experiments (Figure 5a and b). We also observed spectrum quality to better in EThcD compared to ETD (Figure 6). Due to the observed increase in glycopeptide identifications by EThcD over ETD, for all our subsequent experiments EThcD was used for sequencing. An important parameter for EThcD is the amount of supplemental activation collision energy used in EThcD fragmentation. We observed that a supplemental activation collision energy between 20-25 was optimal for maximizing glycopeptide identification and spectrum quality (Figure 7). Comprehensive sequence coverage is very crucial for glycopeptide analysis. Especially dealing with O-linked glycopeptides. These can occur on both serine (Ser) and threonine (Thr), in clusters and on multiple sites on a single peptide. In general, we observed that EThcD achieved improved glycopeptide sequence coverage relative to ETD. Figure 8 shows the importance of having good sequence coverage and the advantage of EThcD. This particular glycopeptide has two potential O-glycosylation sites. Since Ser and Thr are adjacent to each other, mis-assignment can occur without good sequence coverage.

Figure 3. Comparison of N-linked glycopeptides identified by (a) ETD (b) EThcD on Orbitrap Fusion Lumos MS and Orbitrap Fusion MS

Figure 4. Comparison EThcD to ETD in Orbitrap Fusion MS and Orbitrap Fusion MS Lumos

Figure 5. Distribution of identification by peptide mass: (a) EThcD identifications in Orbitrap Fusion Lumos vs. Orbitrap Fusion (b) EThcD vs ETD identifications on Orbitrap Fusion Lumos

Figure 6. Comparison of the quality of spectra: ETD vs EThcD on Orbitrap Fusion Lumos
peptides. Various ETD reaction times, fixed or varied, dependent upon charge states were typically longer ETD reaction times are needed for glycopeptides relative to conventional.

Overview

Large scale intact glycopeptide analysis remains challenging due to complexities associated sequencing of the peptide while preserving glycans on the peptide backbone. This allows for optimizing ETD parameters to improve glycopeptides data on Orbitrap Fusion Lumos MS.

Glycopeptides were enriched from human serum and HeLa cell lysates digests using strong ETD

Fixed reaction time condition

In total, 11 parameters were tested with 21 individual runs to maximize performance on the orbitrap Fusion Lumos and compare performance against the Thermo Scientific™ Orbitrap Fusion™

The challenge is further compounded by the fact that traditional fragmentations are still recommended over HCD

Conclusions

• > 40% increase in identifications using EThcD on Orbitrap Fusion Lumos MS relative to EThcD on Orbitrap Fusion MS for human serum N-linked glycopeptides
• Superiority of EThcD relative to ETD is better exemplified on Orbitrap Fusion Lumos MS than on

For Research Use Only. Not to be used in diagnostic procedures.

Find out more at thermofisher.com