Determination of Carbohydrates in Beverages and Milk Products by HPAE-PAD and Capillary HPAE-PAD

Terri Christison, Monika Verma, Aaron Kettle, Carl Fisher, Linda Lopez;
Thermo Fisher Scientific, Sunnyvale, CA, USA
Overview

- Carbohydrates in beverage samples and milk products were directly determined using capillary format high performance anion-exchange with pulsed amperometric detection (HPAE-PAD) on a capillary reagent-free, high-pressure system.1,2
- This method eliminates the costly and labor-intensive derivitization used in other methods.
- Lactose and lactulose determinations are also demonstrated on the new 4 µm resin particle, high-capacity Thermo Scientific™ Dionex™ CarboPac™ SA20-4µm 4 mm column optimized for fast separations of mono- and di- saccharide sugars.2

Introduction

Monosaccharide and disaccharide determinations are important to the food industry to ensure product formulation and product quality and to report ingredients to immune-and allergy-sensitive individuals. Because carbohydrates are poor chromophores, chemical derivitization is needed for absorption. However, derivitization is costly, labor-intensive and may cause changes in molecular configuration.

High Performance Anion-Exchange chromatography with Pulsed Amperometric Detection (HPAE-PAD) is a proven sensitive method to directly and selectively determine carbohydrates. In HPAE-PAD, carbohydrates are ionized in strong base and separated by anion-exchange chromatography. The carbohydrates are detected by PAD with a gold working electrode using a four-potential waveform selective and sensitive for carbohydrates. This sensitivity allows carbohydrate analysis down to pmole concentrations or when the samples are limited. This sensitivity is moderated in beverage samples which contain g/L concentrations by minimizing the flow path combined with moderate dilution.

Here we demonstrate the determinations of the different sugars used to sweeten beverages and the fast and easy determination of lactose and lactulose in milk products. This work further demonstrates the versatility of HPAE-PAD, easily optimized for low or high carbohydrate concentrations, and separations on different carbohydrate columns, and High-Pressure™ IC (HPIC™) and capillary HPIC systems.

Experimental

Sample Preparation

The beverage samples were prepared by dilution and filtration, as appropriate.

The milk products (1 g/10 mL water) were treated with 200 µL each of Carrez I (potassium hexacyanoferrate(III)) and Carrez II (zinc sulfate) solutions for deproteinization according to AOAC Method 984.151 and as described in AN 2482. The samples were mixed, diluted to 100 mL, centrifuged, and the supernatant filtered and treated with a Thermo Scientific™ Dionex™ OnGuard™ II A sample preparation cartridge to remove anionic contaminants and neutralize the sample.

Method

Thermo Scientific Dionex HPIC Ion Chromatography systems used:

- Thermo Scientific Dionex ICS-5000+ ion chromatography (IC) system, standard and capillary format
 - Dionex ICS-5000+ IC modules: EG Eluent Generator, DC Detector Chromatography, and DP Dual Pump
- Thermo Scientific Dionex ICS-4000 Capillary HPIC system

Detection:

- Electrochemical Detector and Electrochemical cell
- Gold on PTFE Disposable Electrode and pH,-Ag/AgCl Reference Electrode
- PTFE Gaskets: 0.001”, 0.002”, or 0.015”
Autosampler: Thermo Scientific Dionex AS-AP Autosampler
Software: Thermo Scientific™ Dionex™ Chromleon™ Chromatography Data System

Figure 1 shows the instrument flow diagram for a capillary HPAE-PAD system. The Dionex ICS-5000+ system configured for 4 mm or 2 mm format columns has the same flow path but without the CRD and suppressor bypass modules.

Figures 2 and 3 show four-potential waveform for detection of carbohydrates (Figure 2) using a gold disposable working electrode (Figure 3). This waveform is optimized to create a stable gold oxide layer resulting in highly reproducible responses.

FIGURE 1. Flow diagram for a capillary HPAE-PAD system.

FIGURE 2. Four Potential Waveform for carbohydrate determinations.

FIGURE 3. Conventional and disposable gold working electrodes.
Results

Sugars in Beverages
Beverages are generally sweetened with the most available and the lowest cost sugar available in the manufacturing region. Native sugars from fruit may be used for sweetening. The manufacturer often selects the sugar for its product based on availability or lowest cost. These sugars are sourced from either corn, sugar cane or sugar beets. Corn syrup, which is primarily glucose, is enzymatically hydrolyzed to create fructose for increased sweetness. Beet sugar and cane sugar, which are sucrose, are partially hydrolyzed to glucose and fructose to increase sweetness and to minimize crystallization which can cause storage problems.

Figure 4 show the separation of 6 carbohydrates using capillary format HPAE-PAD, 0.4 µL sample separated on 0.4 mm i.d. columns at 8 µL/min flow rates.

Figures 5 to 7 show the analysis of beverage samples using capillary HPAE-PAD with a typical capillary gasket of 0.001” thick. In Figure 5, the sample had a mixture of sugars, characteristic of native sugars. In Figure 6, only glucose and fructose are present indicating high fructose corn syrup (HFC) for sweetening. Figure 7 shows a typical profile of product sweetened with cane sugar (predominantly sucrose with equal parts of fructose and glucose).
FIGURE 1. Flow diagram for a capillary HPAE-PAD system.

Determination of Carbohydrates in Beverages and Milk Products by HPAE-PAD and Capillary HPAE-PAD
High Performance Anion-Exchange chromatography with Pulsed Amperometric Detection
(HPAE-PAD) is a proven sensitive method to directly and selectively determine
and High-Pressure™ IC (HPIC™) and capillary HPIC systems.

This work further demonstrates the versatility of HPAE-PAD, easily optimized for low or
moderate dilution.

Introduction
Lactose and lactulose determinations are also demonstrated on the new 4 µm resin


allergy-sensitive individuals. Because carbohydrates are poor chromophores, chemical
remove anionic contaminants and neutralize the sample.

Experimental
deproteinization according to AOAC Method 984.151 and as described in AN 2482. The
samples were mixed, diluted to 100 mL, centrifuged, and the supernatant filtered and

Dionex ICS-5000+ system configured for 4 mm or 2 mm format columns has the same
Detection:


Gold on PTFE Disposable Electrode and pH,-Ag/AgCl Reference Electrode
Electrochemical Detector and Electrochemical cell
Thermo Scientific Dionex ICS-4000 Capillary HPIC system
Chromatography, and DP Dual Pump

FIGURE 5. Native sugars in apple cider.

FIGURE 6. HFC in a carbonated beverage.
Determination of Carbohydrates in Beverages and Milk Products by HPAE-PAD and Capillary HPAE-PAD

Introduction

This method eliminates the costly and labor-intensive derivitization used in other methods for analyzing high carbohydrate concentrations thereby eliminating eluent preparation, increasing reliability, stability, and ease-of-use. Fast determinations of lactose and lactulose in milk products were demonstrated using Dionex ICS-5000+ system configured for 4 mm or 2 mm format columns has the same particle, high-capacity Thermo Scientific™ Dionex™ CarboPac™ SA20-4µm 4 mm column using only 4 mM KOH. This method utilizes the standardbore format without costly and labor intensive derivitization thereby eliminating eluent preparation, increasing reliability, stability, and ease-of-use. Figure 8 shows that using a 0.015” gasket versus the 0.001” capillary gasket reduces sensitivity and requires less dilution. The resulting analysis suggest the use of HFC 42 for sweetening.

FIGURE 8. HFC in a carbonated beverage -- 0.015” Gasket.

Figure 9 shows the 8 min separation of lactose and lactulose on the Dionex CarboPac SA10-4µm column using only 4 mM KOH. This method utilizes the standardbore format (4 mm) and the standard 0.002” thickness gasket. A high-pressure capable system facilitates the separation.
FIGURE 1. Flow diagram for a capillary HPAE-PAD system.

Terri Christison, Monika Verma, Aaron Kettle, Carl Fisher, Linda Lopez; Thermo Fisher Scientific, Sunnyvale, CA, USA

Determination of Carbohydrates in Beverages and Milk Products by HPAE-PAD and Capillary HPAE-PAD

carbohydrates. In HPAE-PAD, carbohydrates are ionized in strong base and separated

High Performance Anion-Exchange chromatography with Pulsed Amperometric Detection

and may cause changes in molecular configuration.

derivitization is needed for absorption. However, derivitization is costly, labor-intensive

Overview

- Lactose and lactulose determinations are also demonstrated on the new 4 µm resin

This method eliminates the costly and labor-intensive derivitization used in other

- Fast determinations of lactose and lactulose in milk products were demonstrated using

a simply 8-min isocratic separation on the Dionex CarboPac SA10 column

References

Conclusion

- Capillary HPAE-PAD and HPAE-PAD are direct, selective and sensitive methods without costly and labor intensive derivitization

- Modifying the gasket type affects the sensitivity which can be advantageous when analyzing high carbohydrate concentrations

- An RFIC system with electrolytically generated eluent requires only adding water, thereby eliminating eluent preparation, increasing reliability, stability, and ease-of-use

- Fast determinations of lactose and lactulose in milk products were demonstrated using a simply 8-min isocratic separation on the Dionex CarboPac SA10 column