Overview

Purpose: To compare the performance of the new Thermo Scientific™ Brilliance™ GBS Agar (Thermo Fisher Scientific) to Granada (bioMérieux) for the detection of Streptococcus agalactiae (group B streptococci; GBS) from genital swabs.

Methods: 950 genital swabs were inoculated onto Brilliance GBS Agar and Granada Agar and incubated according to manufacturers’ instructions. Presumptive GBS colonies were confirmed using the laboratory’s routine methods.

Results: Sensitivity and specificity of Brilliance GBS Agar was comparable to Granada Agar. However, Brilliance GBS Agar inhibited a far greater number of non-target organisms than Granada Agar, making identification and confirmation of GBS colonies from Brilliance GBS Agar far easier than from Granada Agar.

Introduction

Streptococcus agalactiae is recognized as the most frequent cause of severe early onset (less than seven days of age) infections in newborn infants with an incidence in the UK of 0.5/1000 births1. Although routine screening for antenatal GBS carriage is recommended in the US by the Centers for Disease Control and Prevention (CDC)2, there are no such recommendations from the UK’s Royal College of Obstetricians and Gynaecologists. Nevertheless, many laboratories do screen pregnant women on arrival in the labour ward.

Brilliance GBS Agar is a transparent screening medium for the culture of beta-haemolytic and non-haemolytic S. agalactiae (group B streptococci; GBS). GBS will grow as pink-coloured colonies on the medium (see figure 1). Brilliance GBS Agar contains a combination of antibacterial compounds to inhibit the growth of a wide variety of organisms commonly associated with human carriage. Any non-target organisms (i.e. non-GBS) that are not inhibited, grow as either blue or purple colonies (see figure 2).

FIGURE 1. Growth of GBS on Brilliance GBS Agar

Methods

Sample Inoculation

Nine hundred and twenty genital swabs (taken from women and men during routine screening at Wexham Park Hospital) were streaked onto Brilliance GBS Agar and Granada Agar using the KIESTRA InqulA®-TLA-FA automatic inoculation system. Both media were incubated at 35-37°C for 18-24 hr. Brilliance GBS Agar was incubated aerobically and Granada Agar incubated anaerobically.

Interpretation & confirmation

Orange colonies on Granada Agar were deemed diagnostic of GBS. Orange colonies on Granada Agar and pink colonies on Brilliance GBS Agar were confirmed via the direct testing method using Thermo Scientific PathoDxtra™ Strep Group B latex (Thermo Fisher Scientific). AST (penicillin, erythromycin, vancomycin, clindamycin and linezolid) of presumptive GBS from both media was performed on Vitek® 2 microbial identification system (bioMérieux). Further identification of all colonies seen on Brilliance GBS Agar and colonies other than orange-coloured on Granada Agar was performed on Vitek MS (bioMérieux).

Data Analysis

Sensitivity, specificity and percentage inhibition of non-target organisms (i.e. the percentage of organisms other than GBS inhibited from growing) were calculated for both media.

Results

Sensitivity and specificity of Brilliance GBS Agar was comparable to Granada Agar (see table 1).

TABLE 1. Sensitivity and specificity of the two GBS screening media

<table>
<thead>
<tr>
<th></th>
<th>Brilliance GBS Agar</th>
<th>Granada Agar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>94.4% (95% CI=92.9-95.9)</td>
<td>93.7% (95% CI=92.1-95.3)</td>
</tr>
<tr>
<td>Specificity</td>
<td>99.4% (95% CI=98.9-99.9)</td>
<td>100% (95% CI=100)</td>
</tr>
</tbody>
</table>

Conclusions

Brilliance GBS Agar proved to be a highly selective media for the isolation of GBS from clinical samples and unlike Granada Agar showed noteworthy inhibition of non-target organisms, especially Enterococci and the ability to detect beta- and non-haemolytic GBS within 24 hr.

References


FIGURE 2. Brilliance GBS Agar showing GBS (pink) and non-target (blue) colonies

FIGURE 3. Granada Agar showing significant growth of non-target organisms as well as GBS

The number of non-target organisms inhibited by Brilliance GBS Agar was far greater than Granada Agar. Brilliance GBS Agar inhibited 96% of all non-target organisms compared to only 83% inhibited by Granada Agar (see table 2). Of the nine hundred and twenty samples tested, one hundred and sixty samples plated onto Granada Agar showed white colonial growth of non-target organisms (predominantly Enterococcus faecalis but also species such as staphylococci, streptococci (including non-haemolytic GBS) and yeasts (see figure 3). Growth of non-target organisms on Granada Agar made isolation of GBS far more difficult than when using Brilliance GBS Agar; GBS colonies from Granada Agar often needed to be subcultured for a further 24 hr. to obtain isolated colonies for confirmatory testing.

TABLE 2. Percentage inhibition of the two GBS screening media

<table>
<thead>
<tr>
<th></th>
<th>Brilliance GBS Agar</th>
<th>Granada Agar</th>
</tr>
</thead>
<tbody>
<tr>
<td>% inhibition</td>
<td>96%</td>
<td>83%</td>
</tr>
</tbody>
</table>

© 2013 Thermo Fisher Scientific Inc. All rights reserved. Thermo Scientific is a registered trademark of Thermo Fisher Scientific Inc. in the United States and elsewhere. Thermo Scientific, Inc. assumes no responsibility for any misrepresentation of its products by any customer or other third parties. Thermo Scientific disclaims any warranty for the printed or transmitted copy of this information. Thermo Scientific is not responsible for any loss or damage resulting from the use or application of any of its products. Thermo Scientific collects personal information for the purpose of fulfilling orders, providing customer service and for marketing purposes. You may opt-out at any time by contacting Thermo Scientific. For more information, please contact Thermo Scientific at 1-800-524-0106 or visit the Privacy Policy at www.thermofisher.com/privacy. This information is not intended to encourage use of these products in any manner that might violate any laws or regulations.