Copper safe Click-iT® Plus EdU proliferation assay: Improved compatibility with simultaneous phycobiliprotein and fluorescent protein detection

William Telford¹, Teresa Hawley², Robert G. Hawley² and Jolene Bradford³

¹NIH ETIB Flow Cytometry Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
²Department of Anatomy and Regenerative Biology, George Washington University School of Medicine, Washington DC, USA
³R&D Molecular Probes, Thermo Fisher Scientific, Eugene, Oregon 97402 USA

Abstract

Immunodetection of incorporated bromodeoxyuridine (BrdU) has until recently been the standard method for measuring cell proliferation by flow cytometry. This method has never been wholly satisfactory, however, due to the large size of antibodies and the necessity to chemically disrupt cells and their chromatin for detection.

In 2007, a small molecule technique for detecting 5-ethyl-2’-deoxyuridine (EdU) incorporation to cells was developed and commercialized by Life Technologies (now a division of Thermo Fisher Scientific). The Click-iT®, a fluorescent dihydrolipoic acid (DHLA) reaction, was developed and commercialized by Life Technologies (now a division of Thermo Fisher Scientific). The Click-iT® small molecule chemistry allows fluorescent tagging of incorporated EdU nucleotides without the DNA damage normally associated with nucleotide immunolabeling assays, and has become a dominant technique for proliferation analysis. However, a weakness of the technology was its incompatibility with two major biomolecule-based technologies often used simultaneously with proliferation detection: phycobiliprotein (PB) immunodetection and expressible fluorescent proteins (FPs). Copper (a necessary co-factor for the click reaction) inhibits both PB and FP fluorescence, and therefore prevents simultaneous detection of EdU, fluorescent proteins, and PB fluorescence. Recently, a chemical modification to the Click-iT® reaction was made to make it “copper safe”, rendering it compatible with PB labeling and FP expression. In this study, the “copper safe” Click-iT® Plus EdU incorporation assay was used to measure cell proliferation in mouse T splenocytes and cell lines both expressing a variety of fluorescent proteins, and with simultaneous immunolabeling with phycerythrin and allophycocyanin. This modification maintained both PB and FP fluorescence in comparison with the standard procedure. The “copper safe” modification to the Click-iT® EdU assay therefore improved assay compatibility with these important groups of fluorescent molecules.

Materials and Methods

The conventional Click-iT EdU labeling technology, while permitting the identification of incorporated EdU molecules into replicating DNA, has been found to be incompatible with phycerythrin (PE) immunolabeling carried out before the Click-iT reaction, as well as Aequorea jellyfish derived expressible fluorescent proteins including fluorescent proteins like GFP and YFP. Sensitivity to copper included in the assay required to catalyze the Click-iT reaction. A “copper-safe” formulation of this assay (the Click-iT® Plus variant) was tested in comparison to the standard assay chemistry. In addition, copper was omitted from the reaction in the newer assay formulation to determine if and to what degree its presence affected phycobiliprotein or fluorescent protein fluorescence.

For extracellular labeling experiments, EdU mouse lymphoma cells incubated with EdU at 20 μM for 2 h and labeled for CD90 with the appropriate fluorochrome prior to Click-iT EdU labeling. SP2/0 cells expressing the relevant fluorescent protein were also incubated with EdU at 20 μM for 2 h.

Phycobiliproteins

Below left. Phycocerythrin (PE) and its tandem are copper sensitive and do not survive the conventional Click-iT EdU labeling chemistry (left column). However, the ‘copper-safe’ Click-iT® Plus EdU was compatible (middle column). Omission of the copper from the Plus reaction produced minimal change in fluorescence (right column).

Below right. Allophycocyanin (APC) and APC tandem fluorescence was unaffected by either variant.

Fluorescent proteins

A variety of fluorescent proteins were also tested for Click-iT® Plus EdU compatibility, including Aequorea jellyfish derived FPs EGFP, EYFP and ECFP, and coral derived proteins DsRed and HcRed.

Fluorescent dyes

The “copper-free” formulation of the Click-iT Plus EdU proliferation kit preserved both PE and fluorescent protein fluorescence. Small losses of some fluorescent protein signal still occurred in the assay, but there were due to the permeabilization process, not the presence of copper ions. As determined previously, some phycobiliproteins (including APC) and some coral-derived fluorescent proteins (like DsRed) were not greatly affected by the presence of copper, and functioned well in both variations of the assay. Intracellular labeling with PE after the reaction (as opposed to extracellular labeling before the assay) was also preserved with both assays. In the case of quantum nanoparticles (Qdots® or eFluor® probes), their exquisite sensitivity to copper did not allow their use with either EdU variant. However, recently developed fluorochrome technology like the Brilliant Violet dyes were well-preserved in both variants.

The Click-iT® Plus EdU assays also incorporate a modification in the azide linker chemistry to a picolyl azide. This resulted in improved EdU labeling and a noticeable increase in assay sensitivity.

Results

The “copper-free” Click-iT® Plus assay formulation was found to preserve both PE and fluorescent protein fluorescence. Small losses of some fluorescent protein signal still occurred in the assay, but there were due to the permeabilization process, not the presence of copper ions. As determined previously, some phycobiliproteins (including APC) and some coral-derived fluorescent proteins (like DsRed) were not greatly affected by the presence of copper, and functioned well in both variations of the assay. Intracellular labeling with PE after the reaction (as opposed to extracellular labeling before the assay) was also preserved with both assays. In the case of quantum nanoparticles (Qdots® or eFluor® probes), their exquisite sensitivity to copper did not allow their use with either EdU variant. However, recently developed fluorochrome technology like the Brilliant Violet dyes were well-preserved in both variants.

The Click-iT® Plus EdU assays also incorporate a modification in the azide linker chemistry to a picolyl azide. This resulted in improved EdU labeling and a noticeable increase in assay sensitivity.